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Abstract

The purpose of this thesis is to evaluate if a stereo camera can be used with the existing
Colorophone system, to accurately estimate color and distance in a physical space. Coloro-
phone performs sonification of the visual information, which is transformed into auditory
signals, that can be interpreted aurally. This may give visually impaired access to a sensory
substitution device, that lets them experience visual space through sound.

A Stereolabs ZED Mini was selected to be implemented in a newly designed prototype.
Through use of computer-aided design, a housing was modelled, then 3D printed. By utilizing
the sum of square differences algorithm on pixel data extracted from frames captured by
the ZED Mini, a binocular disparity is calculated. Through interpolation, the distance is
estimated based on the disparity and a calibrated look-up table.

The prototype seemed to reliably estimate distance within 30cm to 300cm, with an accuracy
of 65% within a margin of 5em. A blindfolded subject was trained and tested in determining
distance from auditory signals, and correctly guessed 80% of distances by a margin of 30cm.

In conclusion, stereo cameras may be a viable choice for the Colorophone system in accurately
estimating distance over short to medium ranges.



Abstrakt

Hensikten med denne avhandlingen er a evaluere om stereo kamera kan bli brukt med Col-
orophone sitt eksisterende system, for a estimere presise farge og distanse verdier i et fysiskt
rom. Colorophone utfgrer sonifisering av den visuelle informasjonen, som transformeres til
lydsignaler, og tolkes auditivt. Dette kan gi synshemmede tilgang til et sensorisk substi-
tusjons enhet, som lar de erfare visuelt rom gjennom lyd.

En Stereolabs ZED Mini ble valgt for implementering i en nylig designed prototype. Gjennom
bruk av datastyrt design, ble en beholder modellert og 3D printet. Ved a ta i bruk en sum av
kvadrerte differanser algoritme pa piksel data, ekstrahert fra rammene fanget av ZED Mini,
ble en binokuleer disparitet utregnet. Gjennom interpolering, ble distansen estimert basert
pa dispariteten og en kalibrert oppslagstabell.

Prototypen virket a palitelig estimere distansen innenfor 30cm til 300cm, med en ngytaktighet
pa 65% innenfor en margin pa 5cm. Et subjekt med bind for gynene ble trent og provet i

a fastsla distanse fra lydsignaler, og gjettet rett pa 80% av distansene med en margin pa
30cm.

For a konkludere, stereo kameraer kan veere et levedyktig valg for Colorophone systemet i a
ngyaktigt estimere distanse over en kort til middels lengde.

i



Preface

In this project, the goal is to develop a portable and wearable device, that can translate
images to audio to aid the visually impaired in sensing the physical world. We wish to look
at different techniques to achieve this and to develop our own product from scratch, while
taking inspiration from other projects written on this subject.

Our thesis is connected to other bachelor projects that our supervisor Dominik has supervised
in the past. In 2016, the first prototype of Colorophone was made, and has since been further
developed and researched. The first prototype was able to translate colors and distance into
auditory signals using simpler, and more limited sensors. The the other projects explored
the potential implementation of eye tracking technology to aid usability and control

The employer of the bachelor thesis is the The Norwegian University of Science and Tech-
nology. Our bachelor group consists of three industrial instrumentation students, and one
electronics student from NTNU; Mohammed Hassan Alkhaledi, Jgrgen R. Bolli, Magnus
Jenssen, and Jon Petter Stokmo.

It was decided early on that we wanted to write the thesis in english, as the group thought
that it would be easier to write technical terms in english. Writing this in norwegian could
have ended up with bad translations of technical terms. Another reason was to make the
thesis more accessible, meaning that anyone who is interested has the ability to read it.

We would like to thank our supervisor, Dominik Osinski for his enthusiasm, guidance, and
help during this project.

Date: May 28th, 2019. Location: Trondheim
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Mohammed Hassan Alkhaledi Jorger Bolh
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Chapter 1: Introduction

1.1 The project

The aim of this project is to implement a new prototype that is based on an already existing
Colorophone prototype. The new prototype should be able to acquire color and distance
information through the use of a stereo camera, and turn that information into sound.

A stereo camera is a camera that simulates the human binocular vision. Two image sensor
are used to represent human eyes, one on the left side, and the other on the right side. The
cameras produce two images looking at the same scene from two different perspectives

The fundamental requirements for the project, given by the customer to us, are as follows:
1. Compare different technologies used in stereo camera systems
2. Pick one or two optimal stereo cameras that (in descending importance):
(a) Can be integrated with LabVIEW.
(b) Have good reproduction of color.
(c) Is small enough to be integrated into the current wearable Colorophone device.
3. Acquire digital distance information for a defined point by using a stereo camera.

The project has some additional, supplementary requirements as well that are of second
priority:

1. Integrate existing Colorophone color coding method into a system that utilizes a stereo
camera

2. Expand Colorophone into a system that can provide the user with visual echolocation



1.2 Colorophone

Before we can get into the justifi-
cations for the project, and further
elaborate on the requirements, it is
necessary to give an introduction
about what Colorophone is.

The original Colorophone proto-
type, which will be referred to
as a product from now on in or-
der to avoid confusion, is a wear-
able, head-mounted sensory sub-
stitution device (see Figure .

It transforms visual information Figure 1.2.1: The current Colorophone design as of
into sound signals, with the pur- January 2019, consisting of a 3D printed housing which
pose of enabling the visually im- contains an ultrasonic sensor, an RGB camera, and a
paired to perceive colors and dis- set of bone conductive headphonesﬂ

tance through sound [1].

By giving red, green, yellow, blue,

and white their own unique identifiers in the form of particular frequencies, a user can learn
to recognize each color. The amplitude of each color sound signal varies depending on the
intensity of the color, thus increasing the perceivable color spectrum.

The most up-to-date Colorophone product uses software made with LabVIEW |[2] in order to
transform RGB pictures and ultrasonic distance values into sound. It utilizes an RGB color
model where each of the base colors are associated with a base sine sound frequency. The blue
color is associated with low frequencies, green with middle frequencies, and red with high
frequencies, whereas white noise is used to represent the color white. The frequencies are
chosen based on studies suggesting what frequencies the average person finds most pleasant,
and frequencies that do not interfere with vocal speech. By combining the generated auditory
frequencies for each color, a appropriate sound signal containing visual information is played
for the user so that it can be interpreted. The main idea behind the sensory substitution
is that the brain can adapt into understanding the encoded visual information in the sound
through appropriate training.

An estimated distance value is generated with an ultrasonic sensor, where the value is deliv-
ered to a computer running the Colorophone software so that it can be encoded into a sound
signal. From this distance value, a low-frequency ramp wave is generated, which will emit a
sound that should sound like a ’tick’ to the user. By linearly modulating the frequency of
the wave based on the given distance, the intention is that the user will be able to know the
distance to the source based on the wave frequency, where small distances create more ticks

'Picture taken from: https://www.colorophone.com/technology
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per second, and longer distances create less ticks per second, similar to a parking assistant
system in a car. In addition, if the source is closer than 20cm, the ticks are turned off so
that the user can examine the source undisturbed |[1].

The team behind Colorophone has also made a mobile application version of the Colorophone
system called CLRF Research [3]. The mobile app can be found on Google Play, and uses
the same encoding methods as the most recent product. There is however no distance
sonification, since most smartphones lack the required sensors needed to measure distance.

1.3 Further elaboration

This section will try to further elaborate to the reader the purpose of the project, and how
we will go about fulfilling the requirements given by the customer.

1.3.1 Reasoning for doing this project

In the current Colorophone product, the acquirement of distance between the user and an
object in front of the device is done with an ultrasonic sensor. The sensor sends a voltage
output to indicate the distance, which is estimated based on the ultrasonic waves that are
being captured. Unfortunately it has limiting capabilities in terms of object localization,
while also being unreliable outside of its small defined range. Because of this, the user needs
to look directly at an object by turning their head in order to identify it, and could therefore
not properly work in tandem with an eye-tracking system, which is another Colorophone
feature of interest that has previously been researched by another team of students at NTNU
[4]. Another issue with using the ultrasonic sensor is that it is prone to wave interference,
especially in industrious areas with motors and welding. The interference can affect the
ultrasonic waves, and thus provide false distance information to the user, making it less
reliable.

Stereo cameras have rapidly advanced in the recent years, and are being implemented in an
increasingly number of devices for their depth and distance measuring capabilities. These
stereo cameras have also shrunk in size, and consequentially become more applicable for use
in smaller devices. The availability of cheaper, and more reliable stereo cameras is providing
great potential for low cost development of advanced stereo vision systems.

It is easy to understand that it would be exhausting for visually impaired users to navigate a
room or an item if they would need to move their head all the time with pinpoint accuracy.
This is where the potential of using a stereo camera technology comes into play, with its
larger distance range, modifiable focus area, and less ultrasonic interference. It is a natural
step in the evolution of Colorophone to employ a stereo camera to provide the user with
better distance sensing abilities. A stereo camera can potentially replace all the sensors
currently utilized, thus providing a more compact package.



1.3.2 How the project was tackled

To get the project started, we had to find a good stereo camera, and so it will be necessary
to do research for finding the best consumer stereo camera. At the end of this phase, a stereo
camera will have be selected for our prototype.

The team decided together with the customer that we will design a new housing for the
prototype, which needs to be robust and lightweight enough so that it can hold a stereo
camera while also being comfortably wearable on the head. In the end, we decided that we
will utilize 3D printing technology to physically create the housing.

The stereo camera will be integrated with LabVIEW | as it is a requirement. limiting our
choice of software does limit the range of hardware that can be used. However LabVIEW is

a great programming environment, and we have access to all the previous Colorophone code
generated with LabVIEW.

When the prototype is finally implemented, a subject will test the prototype so we can
conclude if its functionality works as intended. In addition to this, the subject will need to
utilize the prototype in a big test where all the functionality of the prototype will be put to
use.

1.4 Team management

Since this project will be lead by a team of four students and supervised by the customer,
proper documentation of the project will be an integral part in planning and avoiding po-
tential pitfalls. This subsection summarizes what utilities, and habits the team will take
advantage of with the intent of managing the project efficiently.

The team will use a management system where the project life cycle consists of a given
number of periods, where each period lasts two weeks, from the start of the project, to the
end.

Every second week on a Wednesday, at the start of a new period, the team will have a
meeting with the customer in his office at NTNU unless specified otherwise. The day before
these meetings, a meeting agenda will be sent to the customer. Regular team meetings will
be held at least twice a week in order to keep the team updated on the status of the project.

Timekeeping during the project will be accomplished by using an online excel sheet on Google
drive where each member can manually log their work sessions uninterrupted. The timetable
for the project’s entire life-cycle is shown in Appendix

After each customer meeting, the team will send the customer a brief document pertaining
to tasks that had been done the previous period, tasks for the new period, time usage, and
potentially revised project plans. To aid in visually conveying the time spent during the
project duration, an S-curve will be utilized. The S-curve is based on the hours logged in
the timetable, and can be seen in Appendix [D.2]



For long-term planning, the team will utilize a Gantt diagram that will break the project
down into manageable chunks and milestones. It will aid in giving the team something to
consult when details overshadow the bigger picture, or if the project takes an unexpected
turn. It will be appropriately revised to accommodate for any change of plans. The final
revision can be found in Appendix [D.3]

1.5 Thesis structure

The thesis for this project is written in a chronological structure, as it makes more sense to
lead the reader through the entire project timeline, in an effort to avoid misunderstandings.

It all begins with an introduction in Chapter [I| to orient the reader about the project. In
Chapter [2| the reference usage, literature research, as well as tools used, is elaborated on.
The next chapter in Chapter [3]goes into detail about the research phase of the project, where
consumer stereo cameras on the market were compared against each other, and selected for
implementation. Further on to give the reader a better understanding on how these stereo
camera works in principle, explanations of relevant theory is brought forth in Chapter [
Arguably the largest chapter, Section [ goes into the implementation of the prototype that
utilizes a stereo camera of choice. The methods used for testing the prototype, including
experimental results and data, are discussed and evaluated in Chapter[6] Finally in Chapter
[7, it is concluded how well the prototype performed, its shortcomings, and future research
and development that could branch of the work done in this project.



Chapter 2: Methodology

Before going into detail on how we did the research, we must first elaborate on the knowledge
that was needed in order for us to make reasonable decisions. We had to fill gaps in our
understanding, and for that reason we had to get our hands on relevant literary resources.
These resources would then need to be put up to scrutiny before we could make use of them
in the project and in this thesis. As with almost any modern engineering project, we also
had to make use of software tools for us to develop and test our prototype.

2.1 Knowledge needed

First of all we needed to research stereo cameras, since neither of the members had any
particular experience with that kind of equipment. Theory and techniques used with stereo
cameras had to be understood, so that we could make proper decisions regarding which
stereo camera to implement in our prototype. Secondly, we would need to get familiar with
how to do 3D design, as the 3D printed parts for the housing had to be made from the
ground up to support the stereo camera that we would implement. Naturally, we had to
learn how to make proper use of 3D printing and the plethora of available filaments on the
market. Lastly, there was the fact that we needed to develop the prototype in LabVIEW.
This meant learning the ins and outs on how LabVIEW does things, in order for us to
implement bug-free software that could deliver good performance.

2.2 Literary resources

At the start of the project we were given a lot of papers and articles by the customer,
that touched on topics like human perception of visual- and auditory information, Sensory
Substitution Device’s, and animal echolocation. The team read through the papers and
articles to learn, but ultimately we ended up not directly citing them, as the paper written
by our customer had already referred to what we believed to be the relevant papers [1].

For information regarding stereo cameras or other relevant topics, we scoured the internet.
Although the credibility of websites are not so apparent in nature, we kept our internet
citations mostly aimed at corporate websites that produced stereo cameras which we could



potentially make use of in this project. For filling holes in our theory we ended up relying
on Wikipedia despite its infamous reputation when it comes to citing it in academic papers.

2.3 Tools used

For the project there were several software tools that had to be utilized for us to do testing
and comparisons of stereo cameras, not to mentioned the tools needed for developing the
software used with the prototype. This section gives a introduction to the tools used, and
why we had to make use of them.

2.3.1 Fusion 360

Fusion 360 is a CAD software for designing 3D models and was developed by Autodesk. The
process starts by designing 2D templates and surfaces that can be stretched and pulled to
create the desired 3D component. The software can perform simulations such as stress tests
with different materials on the 3D designed models. And so the software was utilized when
designing the 3D model for the prototype housing, and for doing stress tests.

2.3.2 Ultimaker CURA

Ultimaker CURA is a software that slices 3D models, meaning that it translates the model
into commands that a 3D printer can understand so that it can print the model layer by
layer, thus ’slicing’ the model into many layers. In addition to slicing the model, the tool also
decides how the 3D printing will be oriented. It also determines the speed of the printing
process, and the quality of the 3D print. Although there is other similar softwares available,
Ultimaker CURA is free, easy to use, and members of the project had previous experience
with it.

2.3.3 LabVIEW 2018

LabVIEW 2018 is an integrated development environment (IDE) that lets developers create
their own software through the graphical programming language ”G” [2|. LabVIEW is most
commonly used with prototyping, industrial automation, data acquisition, and other high
level applications. The team had to use this IDE since one of the requirements for the project
was to integrate the chosen stereo camera with LabVIEW.



2.3.4 ZED SDK

Software Development Kit for Stereolabs ZED cameras. The SDK contains software and code
that is intended to aid the development of systems utilizing a ZED camera. The software
included in the SDK was used in conjunction with testing during the research phase, and
for capturing frames that would be used to obtain calibration data for the prototype. More
specifically, the following software was used:

e ZED Explorer was used for capturing camera frames with ZED Mini during research
and development.

e ZED Depth Viewer was used during research to test the distance measuring abilities
of the ZED Mini.

e ZED Diagnostic was used to validate that the ZED SDK and ZED Mini was installed
and functioning properly.

2.3.5 Intel RealSense SDK

Software Development Kit that is developed for stereo cameras made by Intel. The SDK
contains several useful features, such as debugging tools, example codes, and wrappers.
The wrappers give developers the ability to make use of Intel RealSense stereo cameras in
programming languages like C, Python, and LabVIEW. We used the SDK when testing the
Intel D415 camera during the initial testing and comparisons of stereo cameras.

2.3.6 MATLAB

MATLAB is a programming- environment and language used for numerical computations.
We used it to create scripts that would provide reference data for the binocular disparity,
which was then used as control value to make sure that the implemented distance calculation
method was correctly functioning.



Chapter 3: Research

In preparation of selecting a stereo camera that would later be implemented for the project
prototype, research had to be done so that bad surprises were less likely to occur during
implementation.

3.1 Research objective

The Colorophone product planned for this project, was in the form of head-strapped glasses
that would be both lightweight and compact, and would function sufficiently across a well
defined range of distances. It also needed to be able to handle varied levels of light intensity
reliably. A major objective of the project was to modify the existing Colorophone software
so that it works reliably with the stereo camera selected during development, so it was
important that it could be integrated with LabVIEW.

3.2 Researching stereo cameras

Stereo cameras are often used to compare relative distances for objects within a certain frame
of reference. The Microsoft XBOX for example uses the stereo camera technology in their
Kinect to track the users movements and positioning [5]. Tesla however, takes data from
their stereo cameras and supplements it with data from several ultrasonic sensors as well, to
drive the autopilot software that is currently used in their vehicles [6].

During research there was a creeping realization that locating a single market leader for stereo
cameras would prove itself to be difficult, as each company took use of different technologies
in order to efficiently extract the most visual data from the camera frames. So a natural
consequence to this fact was that a sizeable chunk of the research phase was spent on just
cataloging, and comparing numerous stereo cameras based on their advertised features, and
the project requirements (see Section .

It was decided to order the two best stereo cameras so that they could be tested against
each other later in the research phase. The following specifications were of primary interest
during the comparison of stereo cameras:



e Resolution. The implementation planned for this project would only need to focus on
a small area of visual data. In the future however, eye tracking implementation would
be more reliable with more distance data. A higher resolution would have repercussions
though, as it would require more computational power, which would result in a higher
power draw, greater cost, and more heat output.

e Minimum and maximum distance that the stereo camera could measure.
A large range would have its merits, but a working range of 10cm to 10m would in
principle be way better than 1m to 30m, as a visually impaired user would in most
cases analyze objects that were the closest for the sake of navigation.

e Minimum and maximum light levels that the stereo camera could detect.
This was importance because with the Colorophone, the user would want to use it both
inside and outside, and so a large light range was an aspiration of value.

e Size and weight. A more compact solution would be easier to integrate with a
wearable product design, and a lighter pair of glasses would be more comfortable to
wear for longer periods of time.

e Power efficiency. A stereo camera with better power efficiency has a lower heat
output, which in turn implies that the product does not need a large battery in order
for it to have a long-lasting operational time.

e Cost. A larger percentile of the visually impaired on earth live in impoverished areas
of the world with sub-optimal healthcare solutions, so a lower cost would result in both
a higher profit margin through both lower product cost, and a larger market size.

¢ Existing SDK available for stereo camera. If less time was needed in order to
implement elementary functions for distance calculations, then more time could be
spent on developing more complex functions.

e Product support and user feedback. By reviewing user feedback given on a
product platform such as a forum, the team can get a glimpse of what real-world
capabilities a 3D camera possesses, while at the same time elaborating on features
that might not be mentioned in the product spec sheets. This could give pointer on
how honest the advertisements of the product made by the marketing departments are.

During the first two weeks of the project the team researched a total of ten different stereo
cameras, with each camera having to comply with the project requirements and the specifi-
cation summed up earlier in this section. Here is a list of the stereo cameras that was not
ordered, and why:

e Intel RealSense R200 |7]. This stereo camera fell short as it was roughly two and
half years old during the project’s run, and Intel had stopped supporting the SDK used
with the R200. The Z300 had replaced the R200 just months after its introduction,
and the most recent stereo cameras released by Intel was the D415, and the D435. So
it decided to investigate the latest D-series of stereo cameras released by Intel, but not
the R200.
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e Microsoft Xbox Kinect [§]. Microsoft was the first company to introduce stereo
cameras to the consumer market. Where previous applications of stereo cameras had
been limited to the industrial market, the Kinect brought forth motion tracking into
the world of video games. Unfortunately, the newest version, Kinect v2, was too
impractical for the project because of its size and power consumption.

e Orbbec Astra mini [9]. This stereo camera came in two version, a short-range version
with a maximum range of just 1m, and a long range version with a minimum range
of 60cm. The range was therefore very limiting compared to other stereo cameras
available for developers, so it was decided that it did too poorly compared to the other
stereo cameras.

e E-Con Systems Tara stereo camera |10]. A stereo camera that lacked good reso-
lution, and had a very limited SDK available, as it was a fairly new startup company
at the time.

e Ensenso N35 [11]. A stereo camera that had many great specifications, due to its
high sensitivity sensor and IP67 rated housing. Its sensitivity was advertised to do
solid work in detecting low levels of light, and would perform quite reliably during
harsh weather. The weight, size, and price was on the other hand outcompeted by
Stereolabs and Intel.

e ASUS XtionPro Live [12]. It was a stereo camera that was initially marketed as a
competitor to Xbox Kinect’s stereo camera. It was however challenging to find open
source software or an SDK for this product, and its availability was limited since stores
required several weeks deliver the product.

With the requirements that was set for the project, and specifications of interest, it was
concluded that the best stereo cameras available on the market for this project was being
produced by Intel and Stereolabs. Intel’s stereo cameras utilized IR projection and stereo
vision, whereas the Stereolabs stereo cameras operated with just traditional stereo cameras
without any IR projection.

The Intel RealSense D415 [13] and D435 [14] had the best resolution on the market for stereo
cameras that used IR projection, and Intel’s open source SDK v2.0 had many great features
such a facial recognition, and height measurement (if the camera was in a fixed position,
and had been calibrated on the spot). See Section for more on the Intel RealSense
SDK. The main difference between the D415 and the D435 was the RGB camera, with the
D415 having a rolling shutter, and the D435 using a global shutter. Both also used different
housings for the lenses. The D415 had field of view that was 20-degrees more narrow than
90 degree lens used by the D435. The rolling shutter also had bad performance during fast
moving paces, but at the same time the D415 was more compact, costs less, and performes
equally well in most situations when compared to the D435. And so the D415 was ordered in
preparation of the tests that would be done on it and the chosen Stereolabs stereo camera.

Stereolabs is a relatively new company, their stereo cameras stands out from others on the
market, since no IR projection is utilized. Their initial effort of developing a stereo camera,
the ZED |[15], was announced as a direct competitor against the motion tracking camera
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that Intel RealSense offered. A motion tracking stereo camera would normally be used for
tracking people, faces or objects, with the camera resting in a fixed position, and the main
intent for the ZED was exactly that. It was therefore understandable that the weight and size
of the camera had not been taken into consideration by the company, which was unfortunate
for us, as it clashes with our need for a light weight stereo camera. Stereolabs had however
designed a new stereo camera, the ZED Mini [16], and promised to aid in augmenting virtual
reality headsets, which meant it was light, small, and had the same features as its bigger
brother. Both the original ZED, and the ZED Mini have a good image resolutions that could
compete with other stereo cameras, and the minimum and maximum operational range of
distance is generous. The second stereo camera ordered was thus the ZED Mini, and ended
up being Intel’s D415 challenger.

3.3 Comparing the D415 and the ZED Mini

To compare the two 3D cameras, we created several tests to compare both their abilities
as conventional RGB cameras and their ability to measure distance. The tests were carried
out at different environmental settings, and was done to recreate probable- and critical use
cases. Several iterations of these tests had to be done to obtain and maintain consistent
data. It is important to note that the tests implemented are not a industry standard, as we
do not have the industrial testing equipment needed. Due to the test equipment and test
environment, it is safe to assume that it would be difficult to recreate the exact numbers
we obtained. However, considering that this is a comparison, it is important to specify that
the specific numbers for each camera do not matter. Rather, it is the relation and difference
between the performance of each camera. Therefore, if one was to recreate, and redo the
tests described in this chapter, the performance of the cameras relative to each other should
still stand true.

3.3.1 Measurement hardware

Comparing stereo cameras is no easy job, as they all have their own strengths and weaknesses.
In order to make way for more reliable comparisons, we utilized hardware that would let us
measure factors that could influence how the stereo cameras captured a scene. There were
specifically two factors of importance; brightness, and replication of colors. See Appendix

[Adland[A2

12



3.3.2 Color testing

A good camera should have the ability to capture colors at different lighting environments,
and represent them as accurately as possible. To test the color accuracy for each camera we
set up three different light environments; dark, medium, and very well lit. This is where the
light meter previously mentioned came in handy, as it let us measure the light level as often
as possible to maintain and secure a fixed test environments for both stereo cameras.

We started by creating a color palette, consisting of eleven colors that were all displayed
on a computer screen individually. We captured a frame with both the Intel D415 and the
ZED Mini for all these individual colors, then the image data was analyzed, and the stereo
cameras were given scores. Both stereo cameras received a score for low, moderate, and
bright light performance. The color palette was created with the help of a WebsiteE], which
allowed us to enter one RGB number, and the output would be a .PNG image composed
entirely of an area containing the same RGB value.

In theory all colors could be recreated by

mixing the colors red, green and blue at dif-
ferent ratios. Electronic displays use this (REd,Green,BIUE)
method to recreate colors, where each pixel (128,0’0)

in an image consists of three values; one
for red, green, and blue (see Figure m
In a 8-bit panel these values can range
from 0 to 255, and are referred together
as (valuegpp,valuegrepn,valuepryp) (see

Figure [3.3.1). The first index is the color

value for red, second is for green, and the Figure 3.3.1: Showing how a dark red
last index represents blue. One can make an color is made by mixing red, green, and
analogy for this method, imagine a painter blue.

with only three cans of paint, red, green, and
blue. If he would mix certain ratios of these colors, he could potentially recreate the majority
of visible color spectrum according to the RGB model.

lw3schools.com
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Figure 3.3.2: A closeup picture of an LCD screen, giving a look into
how mixed colors are actually portrayecﬂ

In the RGB model used, if a pixel has the values (255,255, 255), the resulting color would
be white, whereas a pixel with the values (0,0,0) would be black. So if you wanted a dark
red pixel, you could use the value (50,0,0). This model can recreate 16.7 million different
colors, the display we will be using for our testing however, is a 10-bit panel. A 10-bit value
allows for 210 = 1024 different values for each color, which results in better color accuracy
as it allows for a larger color palette of 1.07 billion colors, approximately 2(19-8) = 22 = 64
times increase in number of available colors. But since the ZED mini and Intel D415 both
use 8-bit sensors, we will setup our test protocol for 8-bit. This will not affect the end results
as our 10-bit display is not the bottleneck, but rather the stereo camera sensors themselves.

It is also important to note that all computer screens display identical RGB values differently
due to calibration and hardware limitations. For this test we used the special monitor with
100% sRGB| coverage, which could recreate input RGB values with incredibly high precision
and intensity. We wanted to have the stereo cameras as close to the screen as possible, but
within a certain distance they had issues with focusing on the computer screen. After having
experimented with several setups, we settled for a distance of 0.5m between the cameras and
the computer screen, which can be seen Figure (3.3.3]

2Picture taken from:
https://upload.wikimedia.org/wikipedia/commons/3/34/RGB_pixels. jpg
Sstandard Red Green Blue: https://en.wikipedia.org/wiki/SRGB
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Figure 3.3.3: Testing both stereo cameras by taking pictures of the screen, then later analyzing
and comparing the pictures.

After the necessary images from both had been captured, we analyzed the pictures using
a Websiteﬁ This website allows the user to import a picture and highlight a small section,
then the website outputs the mean RGB value for the pixels selected. To validate this
methodology, we manually entered the original color palette itself, and analyzed the data.
The website output the same RGB values as the ones initially selected from our palette of
eleven colors, thus assuring that it could be relied on.

3.3.3 Analyzing the data for color testing

We entered the mean RGB values that was obtained from all the pictures into Equation
3.3.1], a scoring function we created, indicating the color accuracy to the original.

Setoraee =1 = == (VR = Ral? + /(G — Ga? + v/ (B~ Ba?) (3.3.1)

Here Scoiorace stands for scoring accuracy. For the colors; A stands for actual, which is
the mean RGB color calculated based on a given stereo camera picture, and R is for refer-
ence. If the computer display was set to a (255,255,255) image, but the camera captured
(128,128, 128), then the score would be 0.5. Higher the score implies better color accuracy.
In Figure [3.3.4) one can see how both the ZED Mini and the Intel D415 performed under
nominal light quantity of roughly 450lx when utilizing the scoring Equation [3.3.1

4ginifab.com
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Medium light color accuracy, 450 lux
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Figure 3.3.4: Color accuracy results in a 450z environment
based on Equation m

We can clearly see that the ZED Mini barely outperformed the Intel D415, as the ZED Mini
had an average score of 0.86, whereas the Intel D415 had a score of 0.84. To the naked human
eye however, the difference between the captured images for both stereo cameras appeared to
be more than the calculated %% delta. Further analyzes proved that the error was caused
by Equation because failure to capture the three different colors were punished equally
in the overall score.

To give an example, lets look at Figure the
uppermost part is a reference palette (255,0,0) dis-
played on the computer screen, the part in the middle
was captured by a hypothetical stereo camera A as
(179,0,0), and the lowermost part was captured by
another hypothetical stereo camera B as (0,179,0).
It is highly visible to the human eye that the lower- 179-0-0 = score 0.9
most part does clearly not match the reference palette
at all, whereas the middle part is atleast red. The
Equation however does not handle this situa-
tion properly. This is of course a worst-case example
created for the sole purpose of highlighting the issue
with Equation |3.3.1], with the numbers used not based Figure 3.3.5: An illustration
on actual findings. showing the problem with
Equation [B:3.1] as a conse-
quence of not properly taking
other colors into account.

255-0-0 = score 1.0

0-179-0 = score 0.9

In order to create a new equation that could more
accurately score the images captured by the stereo
cameras, we had to take a different approach. The
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shortfall of Equation is that a change of 10%

will lead to a score that is different by 3.3%, no matter what RGB color component was
changed. In Figure we can still perceive the second box (0,179,0) as red, even though
red had changed by 30%. It is therefore obvious that a change in red should be considered
less important than a change in green or blue, although this is only true when the color red
is displayed on the computer display.

Therefore a new scoring system was created, where each color is being multiplied by the
values A, B, and C, in which they were selected based on the values seen in Table [3.3.1] A,
B, and C are the 'weights’ for the three different colors, each color of index x in the color
palette has different values for A, B, and C'. Sometimes the values for A, B, and C are
equal, this is because they are all equal components of the color in question. If we throw
colors (179,0,0) and (0,179,0) from Figure separately into Equation [3.3.2] the score
changes from 0.9 to 0.96 for the mid red, and to 0.87 for the mid green.

Table 3.3.1: A table of the constants for each color, where
the values see use in Equation

(R,G,B) Values | x |A | B |C
White (255,255,255) 1|1 |11
Grey (128,128,128) 2 |1 1111
Red (255,0,0) 3 11/3]3
Red dark | (128,0,0) 4 11133
Green (0,255,0) 5 13 (1|3
Green dark | (0,128,0) 6 |3 |1 |3
Blue (0,0,255) 7 133 |1
Blue dark | (0,0,128) 8 3 3 |1
Yellow (255,255,0) 9 |1 |13
Pink (255,0,255) 1013 |1
Teal (0,255,255) 113 |1 |1

The weights in Table [3.3.1] were chosen after several rounds of testing, as we were unsure
at the beginning on how we could calculate, or estimate the values of the weights, therefore
we created a visual test. We started with three images of red, with the first one used as
a reference of the value (255,0,0). For the second picture we changed the red component,
and stopped when the image was no longer completely red, but could be described as ma-
roon (140,0,0). For the third picture we changed the values for green and blue as well to
(255,47,0), again to the point where we could no longer describe the image as red. In con-
clusion, we had to change the value of red by 55% for the second image, but for the second
image a change in 18% for green was enough to change the color from red to orange. This
ratio of three to one stood true for the other colors as well.

1
Scotor-ace = 1 = 7moe (Ao (Br — Ra)® + Bo/(Gr — Ga)? + Co/(Br — Ba)?)  (3.3.2)

17



3.3.4 Color accuracy results

Low light color accuracy, 0 lux, weighted
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Figure 3.3.6: Graph showing how the Intel D415 and ZED Mini performed in perceiving colors at
0lz. The values are normalized. At average Intel D415 average was at 0.45, and ZED Mini at 0.63.

In a dark environment the difference was on average 18% in favor for the ZED Mini stereo
camera. This specific number is not relevant in a practical sense, as the camera sensor for
the Intel D415 is easily overwhelmed in dark environments, where strong and bright colors
such as red and yellow are instead perceived to be white. This behavior renders the D415
as an unusable RGB camera during low light situations as implied by the results shown in
Figure [3.3.6

Our results also show that during normal (see Figure , and bright light environment
(see Figure that the difference in color accuracy for both the Intel D415, and the ZED
Mini is no larger than the normal test deviation. Both of the stereo cameras performed
admirably. It is important to note that the cameras will never have a perfect score because
even though the computer screen we are using is calibrated, the rest of the room is not,
as the environment had a lot of uncontrollable variables such as light coming in from the
covered windows. The lights we used in the room had a yellow and green like tint to it, and
we have therefore reason to believe that these lights changed the perceived colors for both
cameras. This could also be an explanation for why both of the stereo cameras had a dip in
performance for both green and yellow in Figure |3.3.7, and a similar dip for the color red in
Figure [3.3.8
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Medium light color accuracy, 450 lux, weighted
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Figure 3.3.7: Graph showing how the Intel D415 and ZED Mini performed in perceiving colors at
450lx. The values are normalized. At average Intel D415 average was at 0.871, and ZED Mini at
0.879.

Bright light color accuracy, 1400 lux, weighted
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Figure 3.3.8: Graph showing how the Intel D415 and ZED Mini performed in perceiving colors at
1400lz. The values are normalized. At average Intel D415 average was at 0.689, and ZED Mini at
0.695.
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3.3.5 Distance measuring

Both stereo cameras have the functionality of calculating distance built in their included
SDK. The process of calculating distance for the end user is as simple as pointing the
computer mouse at a specific point on the image show in the live stereo camera feed. After our
testing procedures were finished, we agreed to create our own software to calculate distance.
The software is explored in Section [5.3l This decision did not render the comparisons as
useless however, as they showcase the important potential of the stereo cameras.

We wanted to test how accurate and precise the stereo cameras were in measuring distance
at different lighting environments. We started by making a simple rig, where both cameras
were taped to the cartoon box that the Intel D415 was shipped in. The cameras were then
placed so that a measuring tape could measure up to 5m without bumping into any walls
or objects. If any longer distance was needed, we would mark the 5m end, and just move
the measuring tape to the new mark, thereby extending the range. Further on we placed
a book, covered with white A4 paper, perpendicular to the measuring tape. At first the
book was placed very close to the stereo cameras, and then it was moved away from the
stereo cameras in increasingly larger intervals. After certain distances we had to increase
the size of the intervals to save time. So we began at 10cm, incremented by 10cm up to
100cm;, then went on to increment by 25e¢m up to 200cm, and so on, until we ended up with
measurements ranging at most up to a distance of 10m. We then stored the distance values
given by each camera for all the measured intervals. The tests were done at three different
test environments; direct sunshine at roughly 16000/x, medium light level at 650lx, and a
dark room close to Olx, although we suspected that the dark room were not that dark, as
the light meter was cheap and thus not particularly accurate.

3.3.6 Analyzing the data, and results for distance measuring

We started by doing this test in direct sunlight, with the stereo cameras pointing in a
direction towards the sun. After that we did tests inside in medium light as shown in Figure
3.3.9. Finally we also did tests with dark lights as well.

Figure 3.3.9: The setup for distance measuring when testing indoors in medium light.
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For orientation purposes; in the resulting distance measurement graphs, the blue line is the
actual distance from the stereo camera rig to the reference object, the book. The orange
line is the readout from the Intel D415, and the grey line represents the ZED Mini.

It can be seen in Figure that the ZED Mini does a great job from 20cm to about
2m. The fall in accuracy after 2m could be due to focus issues, as the stereo camera was
not able to properly focus on the book. This is nonetheless impressive performance, as we
had troubles to focus on the book without shades with the suns bright light coming from
behind the book. The Intel D415 on the other hand was unable to return any usable distance
readings, and this came as no surprise considering the fact that it utilizes IR technology,
which is negatively impacted by sunlight. One behavior that is important to note however,
were the nonlinear readouts at close distances for the D415. At 30cm the D415 readout was
70cm, and at 40cm the camera returned to an accurate reading of 40cm. This was a big
problem as it made it impossible to determine whether the 70cm was a true reading, or if
the actual distance was just 30cm.

Distanse measurement during direct sunlight, 16 000 lux
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Figure 3.3.10: A graph displaying the stereo cameras measured distances outside with a luminance
of 16000!x.

The results shown in Figure collected during the normal lighting conditions, indicates
that nonlinear behavior for the D415 at close distances was still present. The stereo camera
performed much better however when compared to the test done outside in bright sunlight.
Why the distance calculation suddenly started to deteriorate for the D415 after 3.5m during
our initial testing, we were unsure of.
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Distance measurement, normal lighting conditions, 650 Lux
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Figure 3.3.11: A graph displaying the stereo cameras measured distances inside with a luminance
of 650!x.

One of the benefits of using a IR projector with a stereo camera to measure distance, is how
it handles environments with low light conditions, which is why we expected the Intel D415
to hugely outperform the ZED Mini in our dark room test. The results shown in Figure
tells a different story otherwise however, with the D415 actually doing worse than the
ZED Mini overall, despite it being a bit more accurate for at certain distances. The D415
still maintains nonlinear behavior in the distance measurements however as can be seen from
3.5m and onwards.
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Distance measurement in a dark room, O lux
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Figure 3.3.12: A graph displaying the stereo cameras measured distances inside with a luminance
roughly close to 0lzx.

At this point, we realized that something wrong was clearly going on, we performed the dark
room test several times and ended up with the same results each time. When we initially
received the stereo cameras, we experimented with them and did some simple tests to get
a rough idea on how they would perform, and before the actual comparison tests we had
experienced that the Intel D415 did a good job in low light conditions. The only difference
we actually knew had occurred since the initial testing was that we had upgraded firmware
version for the D415. Luckily we did not have just one, but two D415s, with the other not
having a upgraded firmware. We did the dark room test again, and noticed there was a
significantly better performance this time with the old firmware. After some digging in the
Intel RealSense SDK settings, it was found that the only difference between the old and new
firmware was that the old firmware had a lower resolution by default. We would thus redo
the dark room test with the latest firmware and a lower resolution of 480p instead of 1080p.
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Figure 3.3.13: A graph displaying the stereo cameras measured distances inside with a luminance
roughly close to Olz. For this one however, the Intel RealSense SDK utilized a resolution of 480p
with the D415.

As can be seen in Figure [3.3.13] the lower resolution changed the overall performance of the
D415 dramatically. The nonlinear behavior stopped, and the camera had better accuracy
than the ZED Mini. It is important to note that the latest test with the low resolution
was also conducted in a different room. When we tested the D415 in a similar room to the
original one with the lower resolution the results changed again. The stereo camera distance
readout also became less stable, and we believed this was due to the fact that the highly
reflective glass panes in the room would reflect the projected IR pattern by the D415 in a
distorted manner.

3.3.7 Stereo camera conclusion

Our results show that in an environment with normal or bright light conditions, the dif-
ference in color accuracy for the Intel D415 and Zed Mini is no larger than normal test
deviation. However, in a dark environment the RGB camera sensor for the D415 is too
easily overwhelmed, with strong and bright colors such as red and yellow being perceived as
white, rendering the D415 RGB camera to be unusable in low light situations.

Our initial distance testing suggested that the Intel D415 was useless in measuring distance
in both direct sunlight, and in darker environments. With the sensors dialed back to a lower
resolution however, it actually did outperform the ZED Mini in darker environments. We
decided not to redo the other tests with lower resolutions because of limiting factors with
the SDK provided for both stereo cameras.

Our initial plan during the preliminary project was to use the existing SDK provided by the
stereo camera manufacturers to calculate distance. Since we intended to use the prototype
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as a mobile unit however, this criterion introduced some limiting factors such as limited
power draw and computing power. And so during both the color and distance testing
it became immediately obvious that the provided SDK were not feasible for the prototype.
The provided SDK from both Intel and Stereolabs were difficult to integrate with LabVIEW,
especially for the ZED Mini as it required Nvidia Jetson hardware. At the same time, the
required computing power was above what could be considered feasible in for a mobile device.

The only option was then to create software from the ground up in LabVIEW that could
calculate distance, and doing that with a IR projecting stereo camera such as the Intel D415
was more difficult than with the ZED Mini which utilized stereo vision triangulation. This
is due to the lack of documentation defining how the IR technology works in higher detail,
thus making it harder to understand compared to regular stereo vision. Combined with the
fact that the D415 had bad color accuracy in low light environments, coupled with unstable
behavior against highly reflective surfaces, it became obvious which stereo camera would be
the better starting point for the Colorophone.

The ZED Mini had better color accuracy for all light levels, and its distance measuring capa-
bility was not affected by windows and mirrors. It was easier to develop distance measuring
software distance based on stereo vision considering our time frame. The ZED Mini shape
and weight also lent itself well to be used for a headset. Based on these findings, we therefore
decided to implement the prototype with the ZED Mini in mind.

3.4 Researched hardware that was abandoned

Besides the stereo cameras, other types of hardware were researched as well, specifically
hardware that could provide itself as a small computer that could easily be connected with
the Colorophone glasses through common connectors, such as USB, in interest of designing
a mobile system. This subsection sheds some light on the abandoned hardware that could
have had a future in the prototype implementation that we had planned for this project.

These are elaborated on in Appendix [A.4] and [A.5]
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Chapter 4: Theory

The intention of this section is to disclose theory on what a stereo camera is, how stereo
camera technology works, and how one can calculate distance based on the data they output.
The elaboration on the theory surrounding stereo camera technology is relevant as we rely
on it in order to justify decisions made during the project. Before we can get into stereo
cameras however, a presentation on stereo vision triangulation is needed in order to explain
how two of the more common stereo camera technologies work.

4.1 Stereo vision triangulation

Stereo vision triangulation is a method that is inspired by the human binocular vision system,
where one can estimate the distance to a point through the use of two or more cameras and
software which can perform triangulation.

4.1.1 Triangulation

For the purpose of explaining how triangulation works at its core, assume that we have a 2D
plane where the two points A and B are placed a certain distance L from each other. Draw
a line between A and B and call it the baseline. Imagine then that a point P is also located
on the 2D plane above A and B such that a line can be drawn from both A and B to P
without having the lines intersect with each other or the baseline. Further assume that the
angles o and 3 are known, where « is the angle between the baseline and line going from A
to P, and (3 the angle between the baseline and the line going from B to P. Go on to draw a
straight line from P down to the baseline, and define this line as the distance d. You might
then end up with a triangle that looks similar to the one shown in Figure [4.1.1}
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Figure 4.1.1: A triangle formed by the points A, B, and P, where the length L, and the angles «
and S are known.

With all this known we can calculate the distance d through the use of trigonometric iden-
tities. We can begin by defining the distance L1 to be between A to where the vertical line
intersects with the baseline. Same can be said for B, whose distance we label L2. It then
follows that L is the same distance as L1 combined with L2. Further on, we focus on the two
sub-triangles that the entire triangle is composed of. Now from trigonometry we know that
tan(angle) = ssf;j;f;, which gives us tan(a) = & and tan(B) = 4. We can then make use
of this knowledge with the fact that we know L = L1+ L2 to find a formula for d. Skipping

the algebra process, we end up with the Equation 4.1.1]

. tan(a)tan(p)
d= Ltan(a) + tan(B) (4.1.1)

4.1.2 Binocular vision system

Humans can understand how far away an object is because we estimate the distance to a
point by comparing what our left and right eye sees. If one can imagine that we are hardwired
to know our own baseline and focal length, and that we can understand the angle at which
both our eyes are looking, the idea is that we utilize some form of triangulation to estimate
how far away an object is [17] [18]. The baseline is the distance between the center point of
both eyes, and the focal length is the distance from the retina of our eye to the eye lens (see

Figure [4.1.2]).
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Figure 4.1.2: Illustration of the human eye. EI

Therefore, one can imagine switching out the eyes in the human binocular vision system
with cameras, so that one has a camera for the left eye, and one for the right eye, can be
used to estimate distance. There are then a few requirements that must be followed for this
to work. First both cameras must be securely placed a certain distance from each other
so that the baseline does not change, just like a set of human eyes. Next, the focal length
between the camera lens and its light sensor must be known for both cameras, and ideally
be equal. What we are left with is a device that can capture images, which can then be used
to estimate distance to a point through the use of triangulation.

4.1.3 Binocular disparity

An essential value needed for the distance calculation, in stereo images, is the binocular
disparity. The binocular disparity is the difference in location of objects within the right

and left image [19].

In the triangulation Equation [4.1.1] presented in Section [4.1.1] the angles « and /3 are known.
When calculating the depth in stereo images however, these angles are initially not known,
but could be derived from the binocular disparity in addition to information about the focal
length and baseline of the stereo camera.

To calculate the binocular pixel disparity in stereo images, the correlation between pixels
from the right and left image must be established. Assume that both the right and left image
contains an object that is located in the centre of the left image. The distance to the object
is unknown, and therefore it is also unknown which pixels in the right image that displays

'Picture taken from:
https://garetina.com/wp-content/uploads/2017/01/human-eye-anatomy-diagram. jpg
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the object. This is whats known as the correspondence problem [20]. The solution to this
problem is found using mathematical methods that compare the color values of pixels form
the left and right images.

4.1.4 Cross-Correlation and Sum-of-Squared-Differences

Two basic methods that can be used as fundamentals for solving the problem described in
Section is Cross-Correlation and Sum of Squared Differences.

Cross-correlation is the act of measuring the similarity between two numeric sequences as
a function of the displacement between them. This is done by shifting one sequence over
another while multiplying overlapping values for each iteration. Other names for cross-
correlation is sliding-dot-product, and sliding inner-product [21]. Sum of squared differences
is a method that adopts a similar way of shifting, but the core equation differs. The latter
utilizes the squared difference instead of dot-product, and therefore has the advantage that
the input sequences does not need to be normalized around zero, to produce a conclusive
output sequence.

Both the cross-correlation and the sum.sq.diff. method can be used to search for patterns
in numeric sequences or matrices. The following cross-correlation Equation and the
sum.sq.diff. Equation |4.1.3| can do calculations on two-dimensional matrices. The output
data is produced by running the equations a number of iterations corresponding to the size
of the input matrices. The start coordinates (x,y) are updated before each iteration.

g: reference matrix u, v : coordinates in reference matrix
f o test matrix x,y : start coordinates in test matriz
H : reference matriz height W : reference matriz width
CC : Cross Correlation SSD : Sum of Squared Differences
H-1W-1
CCx,y) = Y > fl+uy+0v)*g(u,v) (4.1.2)
H-1W-1
SSD(a,y) = @+ u,y + ) — gu, )] (4.13)

Il
=)
Il
=)

u v

For the purpose of this description, the two input matrices are called the reference-matrix
g, and the test-matrix f. When searching for a pattern within test-matrix f, using either
Equation or Equation the reference-matrix g contains the pattern to be searched
for. Reference-matrix g is computed against the test-matrix f. Matrix g is typically smaller
than matrix f. The placement of matrix g is shifted over matrix f. By using cross-correlation
(Equation , the values in matrix g are individually multiplied by overlaying values in
matrix f. When the matrices match, the sum of the multiplied values will peak, and thereby
the locations of the matches can be read from the output matrix. On the other hand, by
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using the sum of squared differences method (Equation [4.1.3), the matches are indicated by
the minimal values in the output matrix.

To further demonstrate the methods in a simpler manner Figure [4.1.3] and Figure [4.1.4
illustrates the two methods with one-dimensional numeric sequences, instead of matrices, as
inputs. The yellow reference is shifted over the blue test, from right to left. The number
corresponding to the match iteration, in the output sequence, is marked with green. As you
can see, the shift needed to match the two sequences can be established from the location of
the number indicating a match in the output sequence. In Figure [4.1.3]the match is indicated
by the highest value in the sequence. This shows that the cross correlation works well when
the input test sequence is normalized around zero. However, if the values in the sequences
are all positive or all negative, the possibility for a false match is significantly increased.
The sum.sq.diff. method on the other hand, can handle numeric sequences regardless of the
normalization. As seen in Figure the test-sub-sequence most similar to the reference-
sequence will always produce the lowest number.

g 1 3 -3 2] = I -1 3 -3 2= | -1 3 -3 -2 == L R B
i i i i i i L
t i |3 301 202 1 1 2 2 o4 33 213 2 o 1
= ¢ I 9 -6l t'2 3 3 A ' 1 9 9 4 P
— . = - !
cc 6 3-18 14 -4 -5 11 -9 12 2-11 10 5 63 4 6 4-14 7 5 3 1
Figure 4.1.3: Cross-correlation of two numeric sequences.
9 1 3 5 2} i i1 3 5 2lemm | i1 3 5 ) Pl 3 5 22 e
| i i i i i i i
1 1 1 1 | | | 1
f |3 3l 0o 1 212 11 22 o4 35 213 2 o 1
= ¢ { 2 -5 i1 2 -4 0 { 0 0 0 0 -2
1 1 1 1 1 1 I :
ch2 14 25 : 1 4 16 Oi ! 0O 0 o© 0; oA
'—\IA L ’I’) — v
ssd 1 29104 30 57 66 19 71 21 45 78 28 59 90 90 58 37 8 39 54 5 4

Figure 4.1.4: Sum-of-squared-differences of two numeric sequences.

4.2 Stereo cameras

The stereo camera systems that were relevant for this project, outputs image data in the
form of two images. One image is a traditional RGB image, whereas the other is an image
containing distance data of the scene that the stereo camera is recording. The distance image
can then either be portrayed in the form of colors or in grayscale. Even though the output
of each stereo camera system looks similar, the software powering the stereo cameras could
employ different technologies to generate the distance output.
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Among the most common techniques are: passive stereo triangulation, Time of Flight (or
ToF), and IR stereo triangulation. The team did however choose not to obsess over what
technique would be the best pick, since focusing on selecting a consumer stereo camera that
would fit the requirements was first priority, and anything else came second. See Section
on how the selection process of stereo cameras transpired. From the research done one
a wide array of stereo cameras on the consumer market, the following two stereo cameras
were selected for further testing:

1. D415 by Intel RealSense, which used IR stereo triangulation technique.
2. ZED Mini by Stereolabs, which used passive stereo triangulation technique.

Since these two stereo cameras were tested and compared against each other, it is of relevance
to go deeper into the techniques utilized by both of them. However, an exact description of
the technology used in the Stereolabs ZED Mini has been proven to be difficult to obtain,
as the algorithms and methods used by Stereolabs are not open source.

4.2.1 Intel RealSense IR stereo triangulation

Intel RealSense uses stereo vision triangulation to measure distance (see Section , where
they employ their own manufactured CPUs to do most of the calculations. On the D415
stereo camera, there are two IR cameras, one RGB camera, and an IR laser projector. The
most basic data acquisition of distance can be realized with just the two IR cameras as
illustrated in Figure[d.2.1] The disparity value between the center of the left IR camera, and
where the object is perceived to be in the viewpoint of the right IR camera, can be used to
estimate a distance value between the object and the stereo camera. [22]
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Figure 4.2.1: Illustration on how triangulation is used with the two IR cameras
in order to calculated a disparity value, which is then used to estimate the
distance to an object or a pointﬂ

This simple system has some limitations however, which is why Intel chose to augment the
data by supplementing their stereo cameras with an IR projector. Imagine for a second that
the object seen in Figure 4.2.1| is place in front of a background that has the same color
and texture as the object. This will lead to a situation where the algorithm has difficulty
calculating the correct disparity value, since it can not distinguish between the object and the
background. This problem can be circumvented by utilizing the IR projector to broadcast
a unique texture (see Figure , which the algorithm can then take advantage of so that
the estimated disparity values are more accurate. It is important to note that this method
has proven itself to be quite effective in darker environments, where there is usually little
existing IR radiation, which lowers the amount of interference that the IR pattern will be
exposed to. It is shown in Figure how big of an effect a proper usage of the IR pattern
can have on the resulting distances.

2Picture taken from:
https://www.intelrealsense.com/wp-content/uploads/2018/12/stereo-ssd-1.png
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Figure 4.2.2: A monochrome frame that exhibits what the IR pattern projected by the IR projected
looks like in eyes of the Intel RealSense IR camerasﬁ

Figure 4.2.3: A multicolored display presenting what effect is had on the estimated distance when
the IR pattern is being taken advantage of in the algorithm of Intel RealSense. Notice how the
rightmost picture solves the issue of ambiguous distance that is so prevalent in the leftmost picture
where the IR projector is not usedﬂ

4.2.2 Stereolabs passive triangulation

Stereolabs also base their depth sensing technique on stereo vision triangulation. What
Stereolabs does so differently from Intel however, is that they use passive triangulation
method, where only two RGB cameras are utilized. Stereolabs SDK makes use of NVIDIAs
standalone GPUs in order to do the computations fast. See Section for more on the
Stereolabs ZED SDK.

The algorithm used in the ZED SDK utilizes a depth map that stores the distance value.
These maps are encoded in 32-bit, and so the SDK normalizes these values into 8-bit space
in the value range [0,255], which can be shown in a monochrome display. Figure m show

3Picture taken from:
https://realsense.intel.com/wp-content/uploads/sites/63/with_projector.png

*Picture taken from:
https://realsense.intel.com/wp-content/uploads/sites/63/projector_effect.png
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what this monochrome display looks like in the SDK, where black indicates 0, and white is

255.

Figure 4.2.4: The 32-bit depth map by the ZED SDK, represented as 8-bit
monochrome display.
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Chapter 5: Implementation

5.1 Method for distance calculation

Here we go in depth into how the distance calculation method works for the prototype.
The method was developed to enable the prototype to function as a sonification system for
distance, mainly as a proof of concept. The complexity of the method was therefore kept at
a minimum, and it only outputs one single distance value per stereo camera frame. Figure
is a basic model that illustrates the procedure of the distance calculation method. The
actual code for the implemented method in LabVIEW is elaborated on in Section [5.3.6,

The process of calculating the distance value is as follows:

e First the input image data (see Section [5.1.1]) used for the calculation, is obtained
from the latest frame captured by the stereo camera, in the form of horizontal lines.

e This data is then processed using the Sum of Squared Differences method (see
Section [4.1.4)); it runs once for every set of horizontal lines (one line from the left frame
and one from the right) and outputs one array for each of them.

e Further the binocular disparity for each set of lines is found based on the Sum.Sq.Diff.
output arrays. The disparity is calculated by subtracting the array-index with the low-
est numeric value, from the array length of the Sum.Sq.Diff. array.

e All the disparity values are then filtered and combined to one final disparity value
(see Section [5.1.4)).

e Finally a look-up table along with interpolation is used to translate the disparity to

distance (see Section |5.1.6]).

Reference
) — . lines T, T T T
4 Obtaini 6 lculati o / N / N
f aining % \  /Calculating one,  / N . N -
Currentframe [ reference and | ;Sugﬂ%frgr?s:;‘ad - disparity for each :—HIDiSpariTY ﬂltrationj—p{l Dt!l?sptzl;:tgem o Distance for
\ testlines / / \ setoflines / \ VAR J current frame
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Figure 5.1.1: A basic model of the distance calculation method.
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During the development process of the prototype, efforts were directed towards limiting the
need for computational power, and that is reflected in how the input data is obtained from
each stereo camera frame. The input data must contain enough information to calculate the
distance reliably, but also be limited enough so that the less computations must be done.
The appropriate amount of input data for the distance function is limited by the information
bandwidth of the hearing senses, which has a much smaller information bandwidth than the
visual senses [1].

It is important to specify that the examples provided here are all done with the maximum
resolution of 4416x1242 provided by the stereo camera. This way more data is collected in
each stereo camera frame, which in some cases is an advantage when analyzing the pixel
data. The actual prototype runs with a resolution of 1344x376 so that it can handle more
frames per second since less resources are needed to estimate the distance for each frame.

5.1.1 Distance calculation input data

The primary aim of the distance method used is to enable the prototype to acquire distance
information from a small area in the field of view of the stereo camera. The size of the input
data use in calculating the binocular disparity is reduced by extracting a limited number of
pixels from the left and right image. The binocular disparity phenomenon manifests itself
in the horizontal direction, therefore the image pixels are extracted in horizontal lines. The
horizontal lines are 1px in height, and are evenly spaced along the vertical axis. The reason
for using multiple lines for the computation, is that it will provide a greater precision, which
is accomplished by calculating the mean disparity of disparities that has passed through a
special filter. The filter is explained in Section [5.1.4]

In Figure it can be seen that the horizontal lines extracted from the frame have even
vertical spacing in between them. This spacing allows for the size of the input data to be
reduced, while still covering a broad area of the frame.

For the purpose of keeping things clear, the area marked by the lines in the left image will
be referred to as the "reference area”, while the area marked in the right image is referred
to as the "test area”. The pixels used for calculating the distance are obtained from the
black lines shown in the figure. The lines of the left image are the "reference lines”, and
the ones in the right image are the "test lines”. The size of the reference and test area,
along with the number of horizontal lines in both areas, can be adjusted through a set of

defined parameters. These parameters can be accessed in the user interface of the prototype
software, and are explained in Section

The number of extracted lines utilized in the calculations are crucial in reliably determining
the distance, but more lines means that more computing power is needed, since more lines
must be processed. Therefore the number of lines must be optimized while keeping the
relation between computing power and reliability in mind. The process of optimizing this
parameter and other parameters relevant for the distance calculation method is reasoned for

in Section
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Figure 5.1.2: Stereo camera frame captured from the ZED Mini. The actual, real distance to the
object is 40cm. There are ten lines taken in this case, but might be hard to spot as they are each
only 1px in height.

5.1.2 Best case binocular disparity

The following example demonstrates how the Sum.Sq.Diff. method was implemented in
order to calculate the binocular disparity from the reference data and test data. This case
acts as a proof of concept in order to demonstrate how the implemented method will respond
to what we consider to be a best case scenario.

To better aid in properly illustrating this example, it was preferred to have a large amount
of horizontal lines. This was done by setting the spacing between the lines to only 1px, and
thereby 160 horizontal lines had to be included satisfy the condition of a defined area height
of 320.

The length of the reference lines are set to 600pz, and based on this the length of the test
lines where calculated to (4416pz / 4) + (600pz / 2) = (1404pz), by using equation [5.1.1]

(length_test_lines) = (stereosimage_width/4) + (length_reference.lines/2) (5.1.1)

The illustrations can be seen Figure 5.1.3| and Figure |5.1.4

Figure 5.1.3: Stereo camera frame captured from the ZED Mini. The actual, real distance to the
object is 40cm. The marked area indicates the distance calculation area, where the input data for
distance calculation is extracted.
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(a) reference data (b) test data

Figure 5.1.4: Images composed of the 160 horizontal lines extracted from the black lines seen in
stereo camera frame in Figure|5.1.5 The index row for each line goes from top to bottom, so the
top line is in row 0, and bottom line is in row 159 (in this case).

The grayscale image shown in Figure is the output data given by the Sum of Squared
Differences equation, described in Section in the Theory chapter, after having been fed
the reference- and test data shown in Figure [5.1.4, The data was square rooted, and then
normalized so that the data could be transformed into a grayscale image. The line number
is represented along the vertical axis, and the iterations along the horizontal axis.

Each row in the grayscale image has a set of corresponding reference- and test lines with
the same vertical placement. Consequently the height of the image in pixels is equal to the
number of horizontal lines, 160. The pixels for each row is calculated through iterations of
the Sum.Sq.Diff. equation, and indicates the level of color matching between a set of lines.

The darkest spots in the image indicate iterations where the color matching was at its highest.
According to this data, the best color matching is in the area around iteration 571. Equation

gives us a disparity of 804 — 571 = 233.

disparity = total_number_of _iterations — iteration_with_highest_match (5.1.2)

Figure 5.1.5: OQutput data after running Sum.Sq.Diff. method with data provided by the best case
example.

The number of iterations per set of lines is calculated by the length of the test and reference
lines. For the first and the last iteration, the reference lines completely overlaps the test line.
Thus the number of iterations is found with Formula [5.1.3] For this particular case, we end
up with 1404 - 600 = 804 iterations.

total_number_of _iterations = length_test_lines — length_reference_lines (5.1.3)

The Figure illustrates how the Sum.Sq.Diff method handles the sets of horizontal
reference and test lines. One value in the output array corresponds to one iteration.
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Figure 5.1.6: Illustration of how the Sum.Sq.Diff method runs the iterations on a set of horizontal
lines.

We have now demonstrated how the method calculates the disparity under optimal condi-
tions. However, under normal circumstances the method is subjected to more difficulty.

5.1.3 Normal case binocular disparity

When dealing with stereo vision systems, a common problem is that different color percep-
tions between the left and right lenses of the stereo camera can lead to noise in the stereo
camera frames. The following example demonstrates how the method handles normal scenes
where multiple different object are captured in the reference- and test data. Just as with
the best case example, many horizontal lines over a large height area are extracted so that
resulting noise in the output data can be observed.

As can be seen in Figure [5.1.7 and Figure the stereo camera frame has sub-optimal
light conditions, and areas with similar color values are appearing in multiples locations in
the extracted reference- and test data sets. Since this will be a rather common situation for
most users, it is crucial that we make sure that the system can properly handle cases like
this as reliably as possible. Here we utilize the same parameters as the best case example.

Figure 5.1.7: Stereo camera frame captured from the ZED Mini. The marked area is a set of 160
horizontal lines with a vertical spacing of 1px. The total height covers 320pzx.
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(a) reference data (b) test data

Figure 5.1.8: Images composed of the 160 horizontal lines shown in . Index row goes from top
to bottom, so top is 0, and bottom is 159.

After having calculated the output data using the Sum.Sq.Diff. method just like we did with
the best case, we get the grayscale image shown in Figure Compared to the best case
however, this case ha dark spots in multiple locations, and not just one area. This 'noise’
can lead to false positive matches, and consequently the algorithm will output a distance
value that is inaccurate. It is important to note that a inaccurate distance is way worse
than an undetermined distance, since there is no way for a presumably visually impaired
user to know the difference between an inaccurate and a accurate distance value. If the user
experiences a situation with such discrepancy between reality and the estimated distance,
then the user will not be able to trust the prototype. In order to avoid this from happening,
we implemented a filtration function whose aim is to improve the estimated distance, and
only provide the user with a distance if enough reliable data is obtained.

Figure 5.1.9: This image shows the resulting output data with the normal case example.

5.1.4 Filtering disparity data

Under normal conditions, some of the extracted horizontal lines will produce a disparity that
is correct, whereas the others will not. This is what we will be referring to as 'noise” when
talking about disparities. This noise is a problem since it leads to uncertainty about the
distance, and the goal of the filtering step is to remove this uncertainty.

The noise in the disparity data often appears as clusters of maximum values, or clusters
of minimum values. The first step of the filtration procedure therefore makes sure that
only disparities within a defined range are passed on, utilizing a band-pass filter. On the
assumption that the noise will be clustered, a mode concept is adopted in the filter, where
the most frequency occurring disparities are let through the filter. The mode concept works
in tandem with a threshold that makes it so all similar values, within the defined threshold,
is included when counting the disparity values. This count used to determine the most
frequently occurring values. A larger threshold value means that the filter will let more
disparities through.

Before the final step of the filtration, the function utilizes a minimum_similar_lines parameter
when deciding if a reliable distance can be estimated, where similar lines is referring to
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similar disparities within the threshold. If no reliable distance can be estimated, then no
valid distance will be given, which is indicated by returning a distance of —1. If there is
however enough similar disparities given, then a mean disparity is calculated and passed on
to the interpolation function. The entire filtration process is illustrated in Figure [5.1.10}

|Highs’|nw range limits }—l Threshold
g N Similar to mode

. { Band pass |, Withinrange | Mode filter | within thresholg ——
3 . _
|Arra].r of disparities |—H filter with threshold Mean Final disparity

Figure 5.1.10: Illustration of the disparity filtering method.

The calculated disparity data from the normal case example is plotted against against the
corresponding line numbers, as shown in Figure [5.1.11] Graphs like this can be helpful
when determining what threshold value would be the best for cases like this. This graph
in particular is well suited for analyzation, as it has a lot of data points due to the large
amount of disparities that were calculated off of the 160 horizontal lines.
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Figure 5.1.11: Graph of disparity for each horizontal line. It is based on the data shown in Figure
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The disparities surrounding 131px within the red circle will be the ones that are passed
through the mode filter, since they are the most frequently occurring disparity values. Do
notice however that these disparities are not exactly equal, and this is where the threshold
parameter comes into play. Consider the disparity value around line number 100, then
imagine that the threshold value is set to be really low. In that case, the most frequently
occurring disparity will be 800px (if this disparity is within range). This is because the
disparities within the red circle are not exactly 131px, and so the smooth line of disparities
at 800px take priority with such a low threshold. If on the other hand the threshold is set to
be too high, then the disparities from line 110 an up might be the most frequent occurring
disparities.

Just to confirm that the disparity is 131pz, we measure it by utilizing a MATLAB script.
The script shift the colors of the left image to blue, and the right to red. A measuring tool
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is used to find the exact disparity, as shown in Figure [5.1.12] which then confirms that the
disparity is indeed 131px.

Figure 5.1.12: The image is composed of the left (blue), and right image (red) taken from the stereo
camera frame shown in Figure .

With that in mind, and the fact that we know 131px is the right value, we can estimate a
good threshold value. The lowest disparity value in the red circle is at 124px, and the highest
is at 133pz (ignoring the peaks). This gives us a difference of (133 — 124)px = 9pzx. If we
split that in half we get the minimum suitable threshold at about 5 for this particular stereo
camera resolution of 4416x1242, based on the normal case example. In reality the threshold
ideally needs to be a little bit higher in order to account for a larger variation within the
similar disparities, at the cost of making the mode filter less precise, but more accurate.

5.1.5 Worst case binocular disparity

The following example case demonstrates a potential worst case scenario for the distance
calculation method, with the same parameters used in best and normal case. The stereo
camera frame seen in Figure is deliberately captured in such a way that the system is
tricked into calculating a disparity that is incorrect. The demonstrated problem is known as
the correspondence problem (see Section . It will occur whenever the system is unable
to determine what pixels in the test data corresponds to the pixels in the reference data.

Figure 5.1.13: Stereo camera frame captured from the ZED Mini to illustrate a worst case example.
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It can be seen in Figure and Figure that the black boxes are placed in such
a way, that the box on the left in the test data is too similar in shape with the right box
seen in the reference data. In addition to this, the right box in reference data does not have
the same shape in both test- and reference data, making it even harder for the method to
identify the correct object.

(a) reference data (b) test data

Figure 5.1.14: Reference- and test lines taken from Figure|5.1.14).

The effect of the correspondence problem can be seen in Figure Notice that we got
two areas with similar valleys, meaning that this is essentially a coin flip determines if the
disparity is correct or not, and consequently, the same goes for the estimated distance. The
distance calculation method will in this case determine that the disparity is 869px, which
corresponds to the darkest area to the left in the figure, and is of course the wrong disparity.

Figure 5.1.15: This image represents the output data from the implemented Sum.Sq.Diff. method
for the worst case example. The data was square rooted, and then normalized, so that it could be
translated into a grayscale image. The line number is represented along the vertical axis, and the
iterations along the horizontal axis.

By employing the MATLAB script previously utilized, we end up with a disparity value of
250pz, as shown in Figure [5.1.16| Notice how this disparity represents the rightmost valley
shown in Figure [5.1.15}

Figure 5.1.16: The image is composed of the left (blue), and right image (red) taken from the stereo

camera frame in Figure(5.1.15
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5.1.6 Disparity to distance

In Section [£.1.1] the Equation for calculating the distance d based on the angles «,
and the baseline L was presented. However, the approach for obtaining the distance in the
method implemented in the prototype is somewhat different. Since the binocular disparity
has already been obtained in the previous steps, only the relation between the binocular
disparity and the distance is needed to derive the distance value for the current frame. This
relation is obtained from a look-up table, and also through an interpolation between the
fixed values in the look-up table, to account for continuous disparity and distance values.
The look-up table is generated through a calibration routine.

5.2 Distance calibration

This section goes in depth into how to calibrate the distance function implemented for
the Colorophone. If the camera is replaced on the Colorophone, the disparity vs distance
relation will change. Consequently a calibration must be performed after having changed to
a different stereo camera, or having changed the camera resolution.

To enable the prototype to calculate the correct distance, the values contained in the look-
up table must be specifically adapted to the stereo camera and its resolution. A calibration
routine must therefore be performed as to generate the look-up table, which is in the form
of a text file with the name ”calibration.txt”, and consists of listed disparity values with
corresponding distance values. The text file can then be used by the main Colorophone
software.

There is more than one possible method for calibration. The calibration could be done by
manually measuring disparity in images and writing the values in the calibration text file.
However, to streamline the calibration process, a LabVIEW code is made specifically for the
calibration. This code is not implemented into the main Colorophone software because it is
regarded to be outside the scope of normal operation.

The calibration code writes the calibration text file with the use of an image series that is
captured and saved to disk beforehand. One line in the calibration file is written for each
stereo image in the series.

The input images must meet a certain standard to produce a good calibration. It must
be stereo images, like the one in Figure |5.2.1] with a solid color target-object contained in
the middle of the reference area, that is the centre of the left image. The target-object
should extend over the complete height of the reference area and have a width of about 4
to 8 cm. The background, that is to say the area for pixel extraction not covered by the
target-object, must be of a solid color different from the target-object. Preferably the target
object could black and the background could be white, or the opposite. It is essential that
the stereo images is captured with the same resolution as the system would use under normal
operation.
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To make the calibration easier we used a tripod for taking the pictures, which is elaborated
further in Appendix

Figure 5.2.1: One of the calibration images, taken at 200cm from a white wall with black tape as
the target-object. The frame is captured with resolution 1344x376.

5.2.1 Procedure

1. Capture the stereo images within the desired range of the system, ranging from lowest
to highest distance to target-object. Store all the captured images in the same folder.
The file names must start with the distance to object in centimeters. For example:
7120.png”. If a longer file name is wanted; all the images must start with the corre-
sponding distance and have the same extension after. For example ”80cm_ZED.png”,
7100cm_ZED.png”, and so on. The number of images should be eight or more, as it
will have an effect on the accuracy of the calibration.

2. Open the ” Colorophone_distance_calibration.vi”.

3. Select the folder containing the image series, and the folder you wish to save the
calibration file in.

4. The settings should be set to the same values they have in the main Colorophone
software.

5. Run the ”Colorophone_distance_calibration.vi”.

6. The new ”calibration.txt” file should now be saved in the selected folder. Replace the
old ”calibration.txt” file, located under the ”Files” folder in the Colorophone complex
project path, with the new ”calibration.txt” file.
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5.2.2 Resulting calibration data

The team preformed two calibrations, one with maximum resolution and one with minimum
resolution. In Figure[5.2.2)and [5.2.3| the calibration data is plotted as graphs. The distance,
that the Colorophone would output for each calculated disparity, can be read from the graph.
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Figure 5.2.2: The graph contains the data obtained from a calibration preformed with the use of

procedure and 15 calibration images. The images where captured by the ZED Mini with a
resolution of 4416x1242
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Figure 5.2.3: The graph contains the data obtained from a calibration preformed with the use of
procedure |5.2.1] and 15 calibration images. The images where captured by the ZED mini with a
resolution of 1344x376.
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Notice that the image resolution used for the calibration in Figure[5.2.2is higher than the one
used in Figure As it can be seen in the graphs, the potential for distance precision on
longer distances is higher when using a higher image resolution. In the graph in Figure|5.2.3
the disparity is completely flat at a distance of 400cm to 500cm. On the contrary, with the
high resolution in Figure[5.2.2] the distance is still possible to derive from the disparity value
at this distance. However, the high resolution demands more computing power, and leads
to lower frame rates and higher delay in Colorophone software. The 1344x376 resolution as
in Figure is therefore the one implemented in the prototype as default.

5.2.3 Limitations with the method

The distance calculation method was implemented with the intent of it being fairly straight-
forward, yet functioning. In addition the prototype utilizes the lowest resolution provided
by the ZED Mini at 1344x376, so that the capture delay is minimized, and the number of
captures per second is maximized. Naturally, these implementation decisions has brought
about some limitations to the prototype, more specifically:

e Trouble handling small objects. If an object within the reference area takes up less
then approximately half of that area height, then the software could end up returning
the distance to whatever is behind the object. Thus the object is not detected by the
prototype.

e Static area in field of view. The method is not prepared to be used for a varying lo-
cation of the area subjected for distance calculation, within the field of view. Although
the size of the area can be adjusted based on the distance calculation parameters.

e Areas of similar colors. The system has a tendency to give unstable distance results
whenever the same color is covering the whole reference area. This is due to corre-
spondence problems caused by a large amount of pixels that has similar RGB values
(see Section , and consequently an incorrect disparity value is calculated.

e Limited range The range is somewhat limited due to the low resolution of 1344x376.
The high range limit is set to 300cm, and the distance calculation is most accurate
at even lower distances than that. However the resolution can be adjusted up in the
software, at the dispense of frame rate. Note that a new calibration must be preformed
when changing the resolution.
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5.3 Software

By utilizing and adapting the current software developed by Colorophone to work with a
stereo camera, the team was able to set the foundation for what the next evolution of the
Colorophone product might be. The software was developed using LabVIEW 2018, which is
elaborated on in Section 2.3.3

5.3.1 The application

The application itself consists of three parts that will run in the following sequence when
main.vi (see Figure in appendix) is executed:

1. Initialization
2. Run
3. Close (or Destroy)

The first part, Initialization, declares and initializes data that is necessary for the second
part of the application to function properly. This is data in the form of four FIFO queues,
five user event queues, a Boolean array containing four state Enums, and a 132 timeout
value. See Appendix for code. The importance and usage of this data is elaborated on
in Section £.3.2]

The second part, Run, consists of five processes running in parallel loops, and is where the
user is able to interact with the application. More on this in Section [5.3.2]

The third part, Close, basically does what the first part does, but in reverse. It is needed
because in LabVIEW, queues have to be manually closed in order to properly deallocate
memory. See Appendix for code.

Since the actual application resides within Run, from here on out in Section [5.3, Run will
be referred to as the actual application for the rest of this Section for convenience.

5.3.2 Software architecture

The chosen software architecture for the application utilizes a combination of message- and
event-handling queues to make sure that user interaction, the stereo camera, and sound is
synchronized. The application starts with the GUI process, which resides in gui.vi, and is
responsible for managing user interactions, and maintaining communication between the four
other processes running in parallel; Clock, Camera, Sound, and Logger. A simple illustration
of this communication between processes is shown in Figure [5.3.1] These processes reside
within their own respective .VI’s, namely clock.vi, camera.vi, sound.vi, and logger.vi.
These four processes will be referred to as subprocesses from here on out.
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Figure 5.3.1: Simplified representation of how the subprocesses Clock, Camera, Sound, and Logger
communicate through the GUI process.

In closer detail, GUI consists of several steps that prepares the user interface elements and
subprocesses. After this it goes into a loop that contains a event structure that can detect
new user events. The loop lasts for as long as the program runs, and will close unless an
error occurs, or until the user quits the application by pressing the "QUI'T’ button.

The GUI process communicates with the subprocesses through a message queue, which is
simply a FIFO queue that is shared between GUI and a subprocess, and can hold messages
that contains an action and a payload. Each subprocess has one message queue, and GUI
has access to all of them. An action can be one of the following cases:

e ’Idle’: subprocess is idle (usually the process does nothing).

e ’Start’: subprocess starts.

e 'Stop’: subprocess stops.

e 'Close’: subprocess closes. Does not close the subprocess loop.

e ’Quit’: subprocess quits. This closes the subprocess loop.

e ’Settings’: subprocess updates its settings with new settings contained in the payload.
e 'Read’: a general action, each subprocess usually acts differently when this is received.

All subprocesses are programmed to react somewhat similarly to these defined actions, except
for the 'Read’ action, which is more general in nature and used for special functionality like
Sound playing a sound, or Logger logging some data.

Subprocesses communicate with GUI through user event message queues, which the event
structure in GUI can react to and handle accordingly. As with message queues, these are
FIFO queues, where each subprocess has access to one that is also shared with GUI These
event queues do however not utilize a shared type definition like the message queues, but
rather a private one for each subprocess, meaning the developer can easily add new events
for one process without giving other subprocesses the same type of available events.

The following events come with the prototype software, some common to all subprocess, and
others specific to a certain subprocess:
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e ’Null’: Available for all subprocesses. does nothing, and is never actually used. Simply
there to work as a ’filler’ for the event message type definition for each subprocess.
Technically not needed in the final prototype, but was left anyways as it did no harm.

e ’New_State’: Available for all subprocesses. Updates the state in GUI for the sub-
process that sent the event message.

e 'Raw _Images’: Camera subprocess only. Updates GUI with the newly captured
stereo camera frame.

e ’Sonification’: Camera subprocess only. Gives colors and distance values to GUI
which are then sent to Sound and Logger.

e ’Trigger’: Clock only. Tells GUI that Camera can capture a frame. Will occur as
many times per second as defined by the ’desired_fps’ parameter in the application
settings. See Section for more on the application settings.

e ’Clock_Info’: Clock only. Gives GUI information that Clock possesses such as how
many milliseconds it takes for a trigger to occur. Gets sent every second.

In addition to the event- and message queues, the GUI process, as well as all the subprocesses
have access to another queue that is specifically designed for sending error messages back to
GUI if something goes wrong.

Each subprocess has a state, these being 'Stopped’, 'Running’, and ’'Quitted’. These will
be set based on the action given by GUI to a subprocess, and the subprocess state at the
time. If for example a subprocess is told to 'Stop” when it is already ’Stopped’, it will not
do anything. However if it was 'Running’; it would stop and change state to "Stopped’. This
is accomplished through the use of case structures. The G'UI process knows all subprocess
current states so it can react accordingly to subprocess user events. When the user presses
the "QUIT” button, GUI will send a 'Quit’ action to all subprocesses, then they will quit
and tell GUI that they have a ’Quitted’ state. If all subprocesses have the 'Quitted’ state,
the GUI loop will close, and thus the application will close down.

5.3.3 Front panel

The front panel for the application has two modes, one for the developer and one for the user.
Developer mode can see and interact with all the same GUI elements as the user mode, but
not the other way around. Developer mode can be set making sure the ”developer_mode”
conditional symbol for the software project in LabVIEW is to "true”. It is by default set to
"false” , meaning it will be in the user mode.

The front panel consists of the following GUI elements across both modes:

e Image display that show stereo camera frames, and updates whenever a new frame
is received.
e Quit button that closes the application when pressed.
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e FPS counter which indicate the frames per second for the application in integer form,
more specifically the amount of stereo camera frames received.

e Four sliders, one for each color red, green, and blue, and one for the whiteness. The
slider goes from unsigned integer values 0 to 255. For more on how these values are
determined, see Section

e Color box which shows what color is the combination of the three primary colors
shown in the sliders.

e Distance indicator, a text box that tells the user how far away the object in the
center of the left image is estimated to be by the software. How this value is calculated
is elaborated on in Section 5.l

e Distance found? enables the software to indicate if it has found a trustworthy
distance. The indicator is turned on if the distance value is within range, and the
" disparity_filtration.vi” defines the value to be trustworthy (see Section .

e Camera selected. Gives the user the ability to select what camera to use during
run-time.

e Camera modes. Lets the user select what camera mode they want to utilize. The
available modes are fetched from the selected camera.

A picture of the application in action during user mode can be seen in Figure [5.3.2
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Figure 5.3.2: A picture showing what the front panel looks like to a reqular user.

The developer mode has some additional GUI elements that aid in debugging the software,
and giving the ability to change settings on the fly. There is also an extra tab for graphs that
show data over time if the developer is interested in that. On the front panel the following
additional elements are added for developer mode:

e Four value indicators for red, green, blue, and whiteness values, but as double type.
e Disparity indicator for showing the current disparity.
e Clock FPS that tells the number of times the clock triggers per second is shown
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e Sonification FPS that tells how many times per second the software calculates soni-
fication data.

e Overview of the subprocess states so that the developer can quickly see if a
subprocess is in the wrong state based on the situation.

e Four queue indicators that keeps the developer updated on how many elements
there are in each message queue for the subprocesses.

e Error messages box showing error messages.

The front panel during developer mode at run-time can be seen in Figure [5.3.3]
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Figure 5.3.3: A picture showing what the front panel looks like when developer mode is enabled.

5.3.4 Application settings

Each subprocess has their own settings that can be changed in the 'Settings’ tab that is
available when ’developer_mode’ is enabled. There are application based settings, and then
there are the parameters. Parameters will be touched upon later. The application based
settings are as follows:

e dist_calc_method. Sets the method that will be used for calculating the distance.
By default set to ”SSD” for the Sum of Squared Differences method. Has two other
modes available; 'Random’, and 'None’. 'Random’ produces random distances, and
'None’ sends out no distance.

e log _path. Defines where logs will be saved. By default set
to "[PROJECT_DIR]\data\Log”.

e Logger Mode. Turns logger on or off, is off by default.

e desired _fps. Determines how many times per second the Clock subprocess will send a
"Trigger’ message to GUI, and thus determine the maximum number of camera frame
captures per second for the application.
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5.3.5 Parameters

Within the settings for certain subprocesses there are values that can be defined by the
developer, and will be referred to as parameters in the rest of this thesis. What classifies as
a parameter in our case, is whatever affects the resulting output of either the handling of the
stereo camera frames, or the sonification based on the collected visual information from the
aforementioned frames. This leaves us with the subprocesses Camera and Sound as subjects
of interest when it comes to parameters.

Camera

The following parameters in the Camera subprocess all have significant effects on the result-
ing distance estimated by the distance calculation method:

e filter _threshold: DBL. Defines the threshold for counting similar disparity values.
The most frequently occurring values, within the threshold, is passed through the
filter.

e minimum_similar_lines: 132. Defines the minimum amount of similar disparity val-
ues, each corresponding to sets of lines in the current frame, that will give a trustworthy
distance output.

e length ref lines: 132. Defines the length in pixels, for the reference lines in the left
camera frame. The test lines in the right frame, are automatically adjusted to an
appropriate length when editing this parameter.

e height_area: 132. Sets the height, in pixels, for the reference area, and test area.

e number _of lines: 132. Sets the number of lines that are extracted from the camera
frame with even spacing in between them.

e calibration: 2D array of DBL values. Calibration data used in performing interpola-
tion between distance and disparity. The software also uses this calibration data to set
the range of the distance function. More on the calibration procedure in Section [5.2.1}

For a look into how the distance calculation parameters were optimized for the prototype,

see Section [6.1.1]

Sound

For the Sound subprocess there are numerous parameters that can be changed, as they all
have a hand in making sure the sounds are pleasant to the ears of the user:

e amp: DBL value. Short for amplitude of a sound signal. Defines how loud a sound
signal should be. All RGBW sound signals have a unique amp parameter referred to
as amp.. Here c represents one of the RGBW colors as R, G, B, or W. The distance
sound signal has one as well, referred to as ampp.
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e freq: DBL. Short for the frequency of a sound signal, Referred to as freq.. The
red, green, and blue sound signals all have a unique frequency parameter. In our
implementation, we utilized the same frequency values as the original Colorophone
software, which were chosen based on studies done. These are frequencies that the
average person finds the least annoying, but also frequencies that does not interfere
with human speech. At the same time the frequencies have to differ so they are
distinguishable. The red frequency is set to 1.7kHz, green to 550H z, and blue to
150H z, meaning they are quite distinct and generally easy to identify after having
done listening training.

e freq_cutoff: DBL. Exclusive to the white sound signal, and is used to cutoff higher
frequencies in the signal. It was set to be 7T00H z at default for our prototype.

e min_freq and max_freq: both DBL. Exclusive to the distance sound signal. Defines
the frequency range of the distance sound signal.

¢ min_distance and max_distance: both DBL. Exclusive to the distance sound signal.
Defines what distance range is acceptable for the distance sound signal.

e volume: DBL. Sets the base volume of the application. By default set to 1, meaning
max volume. This is of little concern as the operating system volume is the one
generally used to set the volume.

For a closer look into how the sonification parameters were optimized, see Section [6.1.2]

5.3.6 Distance calculation code

The distance calculation is performed in the distance_ssd.vi (see Appendix for code),
which consists of subprocesses that performs all the tasks necessary to calculate the distance.
This description only concerns the software implementation of the distance calculation, see
Section for a more conceptual description. The following describes all the succeeding
steps, in the order they are preformed in the software:

e In index_data_for_imaq_extract.vi the pixel coordinates, that are needed to extract
pixels from the camera frames, are generated through the use of the Camera parame-
ters.

e In IMAQ_extracting_horizontal lines.vi (see Appendix for code), pixels from
the stereo camera frame is extracted, and will output the horizontal reference- and test
lines. See Section [5.1.1] for more on what these lines are used for.

e The ssd_method.vi (see Appendix[B.10|for code) implements the Sum.Sq.Diff. method
to process each reference line with its corresponding test line. Thereafter it calcu-
lates the disparities for each set of lines, based on the placement of the valleys in the
Sum.Sq.Diff. output arrays, and the array sizes.

e In disparity_filtration.vi, a band-pass filter first removes the disparities outside of a
certain range (see Appendix[B.11]). Thereafter the .vi filters the disparities within range
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with a mode based filter that passes through the most frequently occurring disparities
within a defined threshold (see Appendix . The disparity value for the current
camera frame is finally found by taking the mean of the values passed through the
filter. In addition to disparity filtering, this .vi has functionality for reliability control;
it utilizes the ”"minimum_similar_lines” parameter to check if the amount of similar
disparity values passed through the filter is high enough to produce a trustworthy
distance output. If the outputs is regarded as trustworthy, a Boolean value is set true.
This Boolean has influence on the ”Distance found?” indication light in GUI.

The disparity_interpolation.vi (see Appendix [B.12) converts the final disparity
value, for the current frame, to a distance value with the use of a look-up-table and
interpolation. The look-up-table is generated trough calibration (see Section .

A full view of the entire procedure is shown in the Figure [5.3.4]
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Figure 5.3.4: A simplified presentation of the distance calculation code
architecture, with parameter and image inputs, and with outputs.

5.3.7 Method for color recognition

The system utilizes the color recog-
nition code inspired by the origi-
nal Colorophone system [1] in order
to detect colors in a stereo cam-
era frame. We were dealing with
frames which contained both left
and right images, so we decided
to check the color for the left im- 3. extract center of row based on a percentage parameter
age only so that no fundamental > I | |
changes had to be made on the [

original code.

1. Extract left image 2. extract center row (1px)

2 |f—

x% of line

4. resulting row of pixels that will be color analyzed
What the method does is that it (3 (1101

extracts the center row from the
left image, and then the outer pix-
els of the row is removed, as we are
only interested in a small area in
the image center for this project.

Figure 5.3.5: Illustration that clarifies how the
pizel area extraction of the left image is performed
in preparation of performing color recognition.
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The amount of pixels remaining are

based on a percentage constant that is set to 6.25%, eg. if the row is 500pz wide, then the
extracted area will only cover the center 31pxz of the row. See Figure for a visual
explanation on how this process is executed.

The newly extracted row of pixels is then fed into a function that calculates the mean RGB
values across all the pixels. These mean values are then scaled based on a mathematical
function that utilizes the two constants EXP = 0.67 and k& = 0.06527. A whiteness value
is calculated based on the resulting mean RGB values. The RGBW values are then passed
on to the sonification process. For a closer look into how the code recognition works in
LabVIEW, see Appendix [B.4

5.3.8 Sonification

The colors and the distance information needs to be transformed into sound for the user,
and the name we use to describe the procedure is ’sonification’. The sonificiation procedure
consists of two loops running in parallel within sound.vi, with the creation of sound signals
happening in one loop, and the playing of these signals in the other loop. See Appendix
and Appendix for a view of the code. It is important to note that the reader should
have read about the Sound subprocess parameters for this software in Section before
continuing to read this subsection.

Color signals

To make explanations clearer; whenever ’color signal’ is mentioned, we are referring to not
only 'red’; 'green’, and ’blue’ sound signals, but also the 'white’ sound signal.

The generate_color_signals.vi generates an output waveform signal that consists of up to
four added signals; red, green, blue, and white (see Appendix for code). The amplitude
A, for each signal is based on its corresponding RGBW intensity values I. = [0...1] retrieved
from the color recognition process done in the Camera subprocess, and the corresponding
color amplitude parameter amp.. The actual amplitude for a color signal is determined by
the formula shown in Equation [5.3.1, The division constant 255 is used so that amp. can
range from 0 to 255 without leading to signal clipping. So as an example, if no red color
is detected in the defined focus area for the left image taken from a stereo camera frame,
the intensity of the red sound signal will be set to zero, and thus it will not be heard. This
applies to all of the RGBW signals.

c 5.3.1
255 ( )

The red, green, and blue signals are all pure sinetones, and their frequency is set based
on their corresponding freq. parameter. The white signal is unique since it is represented
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as white noise. The white noise fills the entire audio spectrum with frequencies, so a low-
pass filter is utilized in order to remove frequencies higher than the defined frequency cutoff
parameter freqeutofs-

Tick signal

In generate_tick_signal.vi (see Appendix for code) a ramp wave is generated, where
its frequency is based on the distance calculated by the distance calculation method used
by Camera. See Section for more on distance calculation method. By setting the ramp
frequency f low enough, it will sound like a easily recognizable ’tick’ sound.

The ramp frequency f is inversely calculated off of the distance from Camera, so a large
distance value will create a ramp wave of low frequency, and a lower distance will cause the
frequency to rise. The minimum- and maximum distance parameters decide what distances
are acceptable in the creation of the ramp wave. If the distance is outside one of these limits,
or is a negative value (indicating an error), then no ramp wave is generated. The minimum-
and maximum frequency parameters are used in conjunction with the distance parameters to
calculate the frequency slope, which is used in determining how many hertz are increased for
every centimeter decrease in distance, and ultimately the ramp frequency f. At the same,
these frequency parameters decide the lower- and upper limit for the frequency of the ramp
wave.

5.3.9 Bugs

Unfortunately the software comes with its fair share of bugs, as it too is a prototype in and
of itself. This section will elaborate bugs that will have a direct impact on the user utilizing
the prototype software.

Tick spurs

If the user somehow ends up in a situation where the distance keeps jumping from valid to
invalid, then the user will hear fast and spurious ticks. The cause for this is that the software
has no way of handling a situation like that, so it simply starts by generating a ramp wave
when receiving a valid distance, then it gets cut short when invalid distance is received. The
problem is further illustrated in Figure [5.3.6|
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Figure 5.3.6: An illustration to show what happens with the tick signal
when the distance goes back and forth between valid and invalid. Red
indicates a period where the distance is invalid, and green when its
valid.

There is another, more critical bug however. If the video mode or the selected camera is
changed during run-time, then a lot of spurs will start occurring. If the software .exe was
used, then the spurs will disappear if the application is reset, until video mode or selected
camera is changed again. If the software is ran through the LabVIEW project, then the
problem will persist until the project is restarted. We are not quite sure what the underlying
cause is unfortunately.

5.4 3D design

Considering our background, it would seem appropriate to just design our prototype from
the perspective from electrical engineers. However, our conquest is to see whether stereo
cameras would benefit and progress the current colorophone design, as can be seen in Figure
in Section (1.2l By nature, all stereo cameras will be heavier and larger than the previous
sensors used (one RGB camera and one ultrasonic sensor). Thereby it is important to our
mission to test if we can successfully pack a stereo camera into a compact device that can
be comfortably worn for a long period of time.

Because of the lightweight sensors previously used, the old design was made to fit the user
like traditional eyeglasses. However, our design is bound to be heavier due to the new
components, thereby from a design perspective it will look and feel like a hybrid mixture
between eyeglasses, and augmented reality headsets.

The current design bears many conveniences that we aspire to keep, such as an elegant and
modern design, and usage of open-air headphones. We will utilize the same headphones in
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our design. The previous design also has a few drawbacks we seek to improve with the new
design, as for example fixed side temples that cannot be adjusted to the user’s head.

5.4.1 Open-ear headphones, AfterShokz

The headphones chosen was a pair of AfterShokz Sportz M2, which uses bone-conductive
technology to deliver the audio to the user, and is known as open-ear headphones. The
reasoning behind using open-ear headphones is that they will not occupy the users ears, and
thus the user can more easily interpret environmental sounds, while also listening to audio
delivered by the prototype.

Figure 5.4.1: Photo of the Aftershokz

5.4.2 Implementing a 3D design from scratch

Creating a new headset is not a straight through process, as we are electrical engineers and
not designers. Design is about construction and implementation. There are three limitations,
imagination, production and materials.

To create our headset, we had to choose a 3D designing software. Thanks to the expansion
of hobbyist 3D printing community, there has never been a time with as many options for
3D designing software. We decided to use Fusion 360, as it is free to use for students and non
commercial use. Fusion 360 can generate material stress simulations, a function we will use
to validate designs that we could not produce. The creators of Fusion 360 have developed

Photo taken from:
https://www.elfa.se/Web/WebShopImages/landscape_large/32/94/aftershokz-as321. jpg
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many courses to teach the proper ways of utilizing their software, it took about a week to
learn this software.

There are several production methodologies to transform the digital designs created with
fusion 360 into physical parts, these methods have their pros and cons. During this project
all the components we design will be created using a 3D printer, however, all our designs
can be injection molded.

Injection molding is one of the cheapest and fastest production methods to mass produce a
product, but there are some limitations. For each individual part there needs to be at least
one unique mold, creating a mold is an expensive and time-consuming task. It is impossible
to create one complete hollow part, if you need a hollow ball, then you must create two
hollow half balls and then glue them together.

Figure 5.4.2: A Lego injection moldﬂ

The other production method is 3D printing, it allows for rapid and inexpensive prototyping.
However, 3D printing sets some limitations on the design process. The digital design must
have a large flat surface to be able to be repeatedly and successfully printed. This limits
the aesthetic design and ergonomics, as most organic shapes have many curvatures. A 3D
printed part made with one material, will always be weaker than the same design made with
the same material using injection molding. This is due to the layer technique used to 3D
print a part, as it negatively impacts the tensile strength. This phenomenon is described
in further detail in Section [5.5.2l The price of 3D printing a single part costs less than

ZPicture taken from:
https://en.wikipedia.org/wiki/Injection_moulding#/media/File:LegoSpritzguss.JPG
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producing a single part with injection molding, but the unit price and production time will
not be reduced when the production numbers are increased unlike injection molding.

Considering our time frame, and the fact that we are producing a prototype and not a final
product, it makes perfect sense to utilize a 3D printer. This will limit our design, but we
can at least be assured that a 3D printed component that is strong and durable, will only
become better when injection molded. We will 3D print every design we make in PLA and
TPU, but we will also do stress simulations as if the parts were made with injection molded
PLA and ABS. More information about the materials can be found in Section [5.5.2]

Before we start the design process, it is important to note the desired and necessary attributes
for the final product, and the limitations. So that we can keep them in mind while designing.
The new design needs to have the following attributes and limitations.

e Elegant design that is understated and contemporary.

e Great ergonomics (the ability to conform to all head sizes and shapes).

e Lightweight construction, and good weight balance

e High strength construction that feels solid to the touch.

e High resistance against breakage and deformation caused by a fall or an impact.

e All surfaces that touch the skin must be malleable and comfortable.

e Each component must have at least one flat surface for it being able to be printed.
e The headset must contain the ZED Mini, and the Aftershokz headphones.

e The user should have clear eyesight with the prototype on.

Our 3D printer housing for the stereo camera will be consistent of 5 major components, and
a total of 37 individual parts and screws. All the major components have several versions,
we tried to see the good and bad from each design iteration, so that we could end up with
a good solid design that satisfies our needs. During this chapter, we will go the through the
initial design process, as stage 1 gives great insight of how the design process progressed.
But it will be incredibly time consuming for you the reader to read about every single version
of each component. Hence, we have decided to proceed after stage 1 right up to the final
stage. All major components will be displayed, and their functionalities will be explained.

But for those who are intrigued to know more about our design process, you can find more in
our appendix, see Appendix|C] You will find all the iterations from each component included

with pictures, pros and cons. You will also find computer simulation for stress testing the
parts, as if they had been injection molded with ABS, see Appendix [C.1}

5.4.3 Stage 1 of the design process

The ZED Mini has a plastic shroud that protects the internals, this shroud also adds weight
and bulk to the circuit board that contains the lenses and microchips. We will not be using
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this shroud as we will be creating our housing that will protect the internals of the ZED
Mini.

Figure 5.4.3: The ZED Mini internals.

As we can see from the figure [5.4.3] the circuit board is bolted to an aluminium frame. We
reverse engineered this frame. We believe that the aluminium frame serves three purposes:

e The frame protects the circuit board from a high impact hit, because the frame is
larger than the circuit board, assuring that an impact will always hit the frame before
the circuit board.

e The frame reinforces the circuit board and adds torsional rigidity. Because it has many
crossbeams and is tightly bolted to the circuit board. Ff the board shifts or bends,then
the two camera lenses will not be in parallel to each other. Such a shift will negatively
impact the accuracy for distance measuring at longer distances.

e The frame serves as a heatsink for the microchip onboard, as there is thermal grease
placed on the touching surfaces between the frame and the microchip.

It is in our best interest to keep this aluminum frame and use it in our camera housing. It
will be used as a structural part, leading to a lower weight penalty. The same number of
hours that would have been spent on a new heatsink design can be allocated toward creating
a more ergonomic and elegant design for the camera housing and temples.

The first digital part we designed was an exact replica of the ZED Mini internals, see Figure
(.44 All the important characteristics were measured with a measuring caliper. The idea
is to use this digital model to help us design a better camera housing. As we can always be
assured that the ZED Mini internals fit our camera housing without 3D printing the actual
part.
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Figure 5.4.4: A 3D computer model replica of the ZED Mini internals.

A unique aspect of the ZED mini is that the lenses are not centered on the Circuit board.
This meant that a design choice had to be made. Do we center the frame on the user’s head
(see left side of Figure [5.4.5), or, do we center the lenses on the user’s head (see right side
of Figure ? This sparked a discussion internally. Because some in group believe that
if the lenses are not centered on the head, then the entire design will look wrong. This idea
assumes that the pattern recognition part of our brain will associate the two camera lenses
with eyes, and if they are not centered and symmetric, then we will immediately hate the
design. The other part of the group believed that if the frame is not centered, then the 3D
printed housing part must become larger, otherwise a part of the frame will protrude out of
the side.
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Figure 5.4.5: An illustration to show how centering the ZED Mini with the head, or lenses with
the eyes looks like.

To end this discussion, two simple and wearable housings for the ZED Mini were made.
These housing had two main objectives, display the importance of symmetry and give us a
starting point for the next designs to come.

y "¢

Figure 5.4.6: Left side is prototype V1 with centered lenses, right side is prototype V2 with centered
aluminum frame.

Things we learned from the two 3D printed housing in Figure [5.4.6

e The lenses must be centered on the user’s head, almost every one that tried the hous-
ing on the right side on Figure [5.4.6] said it looked wrong. Meanly because of the
asymmetric aesthetics.

e The extra width added to the housing on the left side on Figure did add more
weight to the unit, however the extra width made the prototype housing more com-
fortable to wear.

e [t is nearly impossible to design a nose pad that will universally and comfortably fit
every user. With just three subjects we found three different preferred shapes for the
nose pad.
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e Our suspension that fixed side temples (not user adjustable, do not confuse with col-
lapsible) will be highly uncomfortable, was confirmed.

e The temples should be mounted on a collapsing mechanism, as a drop with fixed
temples might possibly cause preventable damage.

e The design needs more curves, as it will make the housing more elegant and more
comfortable to use.

e We need a secondary system besides the temples to help hold the housing on the
user’s head, as the temples alone are not enough to hold to housing during high speed
maneuvers.

5.4.4 Final stage of 3D design

Figure 5.4.7: Final design of the housing

The housing was designed to conform around the user’s head, as we can see in Figure [5.4.7]
The front is tightly pulled over the ZED Mini, so that as little overhang over the user’s face
is achieved.

The backside is made larger than required for the camera frame, so that the frame wraps
around the user’s forehead, this choice was made for aesthetic and ergonomic reasons. The
user can utilize the strap mechanism to tightly pull the housing on their forehead, and
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the extra curvature of the backside helps spread the load over a larger surface area on the
forehead. There is a backplate created with soft TPU that sits between the housing and the
users head, see Figure [5.4.8/3. When the strap is used correctly, more weight will be placed
on the ears rather than the nose, resulting a more comfortable fit.

o 7 B

Figure 5.4.8: From left to right, 1. left side of the housing, 2. ingress in housing for nose pad and
setscrew, 3. TPU backplate, 4. right side of the housing.

On the left side of the frame, as seen in Figure [5.4.8/1, we have an opening for the USB
type-c cable for the ZED Mini. In the middle section there is an ingress and two holes,
these are for the nose pad, as seen in Figure [5.4.8/2. The nose pad is not molded into the
housing because we have several nose pad designs meant for different users. There are no
extra strengthening measures taken in the center section, because we will be utilizing the
aluminum frame from the ZED Mini. It will be tightly bolted to the two beams on the left
and right side, see Figure [5.4.9/1. On the out right side there is a Colorophone logo ingress,
this is to pay homage to the previous versions of the colorophone prototypes, the logo can be
seen in Figure[5.4.8/4. A cross beam was placed on the inside of the right side, as a result of
computer simulations revealing potential permanent damage during an impact after free-fall,

see Figure [5.4.9] 2.

Figure 5.4.9: From left to right, 1. The light grey part is the aluminium ZED Mini frame inside
the housing, 2. The crossbeam on the right side of the frame.

On each side of the frame we have the connecting points for the temples. Underneath the
connection points we will find two holes, these serve two purposes. They allow a M3x20mm
setscrews to enter the connection points so that the temples and frame can be screwed
together, as seen in Figure [5.4.10]2. The connection points allow the temples to be folded
during shipping, see Figure [5.4.10/1. When the user wants to deploy the temples, they can
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just push the temples to the last position. Just before the temples hit the last position, the
user will feel and hear a tactile click to confirm that the temples are fully deployed. This
feature was achieved by letting the temples and frame slightly rub on each other right before
the temples are in position. We observed no material erosion due to this mechanism, but
the potential is there.

Figure 5.4.10: From left to right, 1. The housing with the temples folded, 2. The collapsing
mechanism and the holes in the frame from the setscrews.

When purchasing traditional eyeglasses, one will find tens, if not hundreds of choices in just
one store. We as users might initially differentiate the glasses based on visual appearance,
but, different stores carry such a vast inventory simply due to the enormous pool of different
head sizes and shapes. Designing one style of nose pad that can fit all users is unfortunately
out of the picture, we decided on 3 different designs. The reason we stopped at four was
simply time limitation, developing a library of different nose pads that could fit most users
is definitely a feasible future.

Figure 5.4.11: The three different nose pads that were designed.
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Figure 5.4.12: An illustration of the range of width for the temples.

The temples we have designed have several unique functions. The two joint mechanism
allows the temples to have a range of width from 102mm to 166mm. This insures better
compatibility with different head sizes and shapes. The temples have mounting points for
the bone conducting headphones. The bone conducting headphones require some tension
on the user’s head to function properly. The temple adjustment allows for perfect tension
on the headphones if they are adjusted correctly. Once the temples are adjusted, they will
not hold position. Because the weight in the front of the housing will pull the temples apart
with time, and high-speed movements. For optimal fit, the user or a helper should unscrew
the setscrews that join the individual parts in the temples, not to be confused with the
setscrews that join the temples to the housing. Once unscrewed, the user or helper should
apply Loctite to the setscrews. The setscrews should be tightened to the temples promptly,
then the user should wear the head device and form it to their head. In a couple of minutes,
the Loctite will harden, and the temples will keep their new shape. the last section of the
temples is hollow, so that a wire or string can be threaded through. The string is used as a
strap.

Because the temples are produced with hard plastic, we have created thin TPU side-plates
that will be fused on the inside of the temples, as can be seen in Figure [5.4.13] These side
plates add more comfort because of the malleable nature of. They were also designed to hide
the headphones wires, and the strap mounting point. During the Loctite applying procedure
the user might have trouble aligning the parts of the temples, but with the side plate on,
the components will be held together.
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Figure 5.4.13: The TPU sideplate that are fused to the temples

Figure 5.4.14: The strap mechanism for the prototype.

The strap tensioning mechanism is incredibly easy to use. During production, a wire must be
threaded through the tensions, and then mounted to the temples. When the user wears the
head device, they can utilize this mechanism for better fitment. The geared wheel, as seen
in Figure [5.4.14] can be turned clockwise to tighten the strap. The geared wheel is designed
to maintain its position once tightened. The only way to relieve the tension is by pulling
down on the leaver on the right side, and then rotating the geared wheel in an anti-clockwise
direction.
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5.5 3D printing

5.5.1 3D printer, Wanhao Duplicator i3 Plus

The 3D printed parts designed for our prototype were printed with a Wanhao Duplicator i3

Plus.

The printer in question was a FFF style printer, which prints the 3D object layer by

layer, and had to be taken into consideration when designing the prototypes [24]. The 3D
printer had been modified, and was being maintained by Jon Petter. The modifications had
a significant improvement on the quality of the printed pieces, and were as follows:

Micro Swiss All Metal Hot End. Replacement for the stock nozzle and thermal
barrier tube, enabling the printer to print with higher temperatures, higher speeds, and
composite materials due to a significantly better heat transfer. In addition, it gave a
more consistent flow and melting rate, while also reducing stringing.

Aluminum Y Carriage Plate. A much sturdier and lighter Y carriage plate was
added since the stock Y carriage plate was too weak, and prone to bending, which
affected the prints by messing up the build plate calibration.

Better Calibration Thumbwheels. Bigger thumbwheels with better grip and dial,
which made the calibration process much easier as one could see how much each thumb-
wheel had shifted since the last calibration. It was also now capable of using a locknut
for better fastening of the thumbwheels if needed.

Stiffer Bed Plate Springs. Stiffer bed plate springs together with spring cups helped
to reduce wobble caused by the bed plate moving back and forward during printing,
and worked as good support in keeping the bed plate calibrated. If just one or more of
the springs are weakened, it is easier for the bed to wobble and mess up the calibration.

Z-brace Mod. A highly recommended modification for the i3 styled printers, whereby
adding a brace to the tower (z-axis) stiffens the chassis of the 3D printer, and thus
negates tower wobble.

Glass Print Bed. A removable glass bed for printing on that was placed directly on
top of the original build plate. It could be removed from the printer quite easily in
order to remove prints faster. At the same time it kept the process cleaner, and since
it worked as a form for adhesion, printed parts would end up with a smoother bottom
surface.

OctoPrint with Raspberry Pi. A Raspberry Pi that is connected to the printer
through custom OctoPrint softward’] adding a web interface for the 3D printer, and
giving the user full wireless control of the printer, with built in webcam support and
GCODE visualizer. This mod did not directly affect the print quality, but gave much
better control and surveillance of the printer.

PID tuning and various other software settings. PID-tuning was ran after the
Micro Swiss upgrade was completed, which caused the temperatures to be much more
stable during printing, while at the same time never dipping more than 2 degrees
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centigrade from the target temperature. Other settings such as jerk, and acceleration
was modified to give a much better print quality overall as well.

—— —

Figure 5.5.1: A stock Wanhao Duplicator i3 Plusﬁ

5.5.2 3D printing process

During the 3D design process for the prototype, several prototype versions were being printed
so that their strengths and weaknesses would arise. It became apparent after some stern
stress testing that the printing orientation had a noticeable effect on the prints, as the
strength between the layers (z-axis) was weaker than any other axis (see Figure [5.5.2).

Another factor is the type of plastic that is used, as most 3D printers are capable of printing
with different types of plastics and composites, all ranging from standard PLA plastic to

3https://octoprint.org/

4Picture taken from:
https://cdn4.mystore4.no/thumb/480_600/3dprinter/66705_Wanhao_Duplicator_i3_Plus_1.png

°Picture taken from:
https://s3-eu-west-1.amazonaws.com/3dhubs-knowledgebase/print-orientation/visual2.png
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Figure 5.5.2: Tllustration of the directional tensile strength for 3D printed part

different types of plastic composites, from wood to carbon fibre [25]. The materials have
different physical properties and have their own advantages and disadvantages, as some of
the materials are optimal for mechanical parts, while others materials only works best for
decorations.

The early prototypes has been printed with PLA as it is easy to work with and easily
available. A few different types of PLA have been used. At first, Flashforge PLA bought
from the local Clas Ohlson were usedﬂ but due to several failed prints using the PLA from
Flashforge, it was switched to PLA filament from Prusa Research[l (see Figure, as their
filament are made with much higher standards than the rest of the industry.

Figure 5.5.3: The prototype stereo camera housing in the midst of being printed with black PLA
from Prusa Research.

Shttps://www.clasohlson.com/no/Filament-PLA-til-3D-skriver-Flashforge/38-7721-2
"https://shop.prusadd.com/en/prusament /711-prusament-pla-prusa-galaxy-black-1kg.html
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Other types of filaments have also been considered, as PLA is not the best material for the
finished product. PLA has a low glass transition temperature at 60 °C (The temperature of
which the material begins to become soft) and has a low UV-resistance, which is not suitable
for outdoor use. ABS was one of the considered materials as it is a strong material and can
withstand high temperatures. However, the ABS requires high temperatures to print with
to prevent warping and destroying the print. It also produces an unpleasant odor when
printing, and from own experiences, not worth the effort to print with.

PETG from S’DNeiﬂ was later selected as a candidate, as it is a tough material that is very
durable, can be used outdoors due to it’s higher UV-resistance, and is easier to print than
ABS and without the odor. However, some problems still occured when printing with PETG,
as it has a tendency to not bridge well and support material for overhangs had a tendency
to fail, making overhangs difficult to print if support is needed. This led to the choice of
not using PETG during prototyping, as it is easier to get better quality prints from PLA for
prototyping, and the color we received from ordering were blue, not black as requested.

The last type of plastic that has been considered is TPU. There are several types of TPU,
but ended up choosing Ninjatek’s Ninjafleal’, which is a flexible material, but is at the same
time relatively easy to print with some practice, as it a flexible filament, some calibration of
the print speed and material flow is required to achieve a steady flow of plastic. Printing this
material with the printer mentioned in Section will be slow as the only way to print
with this material successfully is to print with slow speeds to keep an even material flow.
However, it is possible to purchase an upgrade for the printer called a Flezion Extruder|
that is specifically made to be used when printing flexible materials, but due to the high
price and little usage of the flexible material it is not worth it. The plastic is too flexible to
use for the housing for the camera, but is intended to be used as a padding material to give
the user a more comfortable fit.

8https://3dnet.no/products/petg-1-75-1-0-kg
Ynttps://3dnet.no/products/ninjaflex-1-75
Onttps://flexionextruder.com/
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Chapter 6: The prototype

The final prototype seen in Fig-
ure [6.0.1] consists of the 3D printed
housing (see Section contain-
ing the ZED Mini, and bone-
conductive earbuds (see Section
for sound. The prototype
must be connected to a computer
running the software for it to work.

The prototype had to be tested for
us to be able to conclude just how
well it worked in practice. In addi-
tion it was of great interest to see if
a test subject could learn to make
use of the prototype after having
done specialized training exercises
developed for the prototype, and
then utilize the training to tackle
problems that would require that

Figure 6.0.1: What the final prototype looks like.

the test subject could decode the sound signals into usable information about color and

distance.

6.1 Optimizing

Before doing any testing of the prototype, it first a necessity to optimize the software as
best we could through proper parameters values which had been chosen based on intuitive
reasoning. See Section for a presentation on the software parameters and their effects
in general. This subsection will first elaborate on the chosen parameters for the distance
calculations, and then parameters for the sonification process will be justified.
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6.1.1 Distance calculation parameters

We will now explain why and how the particular parameter values utilized by the distance
calculation method were chosen.

From the conclusions made in Section [5.1.4] it was recommended to choose a threshold

slightly higher than the minimum value 5. If we then choose 10, we must also divide it

by a ratio value, since the prototype utilizes a resolution of 13442376, whereas the filtering

example used 4416x1242. We can find this ratio by looking at the disparity values at distance

30cm in Figure and Figure in Section [5.2.2] then find the ratio between those
300

disparities. The ratio is then == ~ 3.896, giving us a threshold of ﬁ%m ~ 3 rounded to the

nearest. Therefore filter_threshold was set to 3.

The minimum _similar_lines parameter was set to 15% of the total number of lines calculated.
In Figure under Section [5.1.4] the number of lines passed though the filter is 44 of 160
total, so 27,5% is passed through. Based on this it is estimated that a minimum number of
similar lines less than 15% is unreliable.

The length_ref_lines parameter was set to 150pz. When setting the length of the reference
lines, it is important to notice that all the objects contained within the reference area is
targeted by the distance calculation. See Section for more on distance input data.
Some length is needed in order to provide enough pixel data to make the distance calculation
possible. On the other hand, multiple objects with different distances can result in unstable
results, so 150px was chosen as an appropriate compromise.

The height_area parameter was set to 30px. The distance function performs best if the
targeted object roughly covers the reference area in height. Therefore the minimum size of
the objects that the distance function should be able to detect, is a key factor when deciding
the height of the reference area. Within the defined range, 30px is enough to capture the
height of a human head at roughly 4m.

The number_of lines parameter is preferred to be as high as possible when regarding the
reliability of the distance measurement, and since the resolution is set to a minimum, the
parameter’s effect on the real-time-performance is minimal. However, it had to be limited
to 30, because there can not be more lines than the size of height_area.

The calibration parameter is set to the calibration data seen in Figure found in Section
(.2.2] Since the sensitivity is so low at high distances, we only use calibration data up to
300cm, because anything further than that starts to become unstable. Thus the we utilize
calibration data ranging from 30cm to 300cm.

Figure [6.1.1] illustrates what areas will be used to calculate the distance based on the pa-
rameter values that we just defined, and are shown in black. The implementation of the
distance calculation is elaborated on in Section [5.1]
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Figure 6.1.1: Black boxes shown indicate what pizel data is being used to estimate the distance.

6.1.2 Sonification parameters

In the original Colorophone software the parameter frequencies chosen for the RGB sound
signals were supported by studies, but their corresponding amplitude parameters were not,
which meant that finding proper values for the amplitude parameters were a reasonable
action to take. We thought it would make the most sense if each signal sounded equally loud
when their corresponding color values were at full intensity, so we had to determine what
the values for the amplitude parameters needed to be. For this we had to rely on previous
data on how humans perceive loudness based on frequency, and we had to look no further
than the ISO 226 standardl] which consists of an equal-loudness contour that indicates how
loud a sine tone of a given frequency is perceived by the average person. Through the use
of the inverse ISO 266 plot seen in Figure [6.1.2] we found the values that would make the
color sound signals sound equally loud at full intensity. The rest of this subsection relies
on the fact that the user read about the Sound subprocess parameters in Section [5.3.5] and
understands their purpose.

First, we assumed freqr = 1.7kH z was roughly 0dB = 1 in magnitude, as can be seen in
Figure , so we take the reciprocal of that and get the amplitude ampgr = % =1 for
red. We repeated this process for green and blue as well, still going by the inverse ISO
226 plot in the figure. For green we found that freqs = 550Hz was estimated to be at
around —1.5dB =~ 0.8414, meaning ampg = Wﬁm ~ 1.19. Further on with blue where

freqg = 150H z, a magnitude of —14.5dB =~ 0.1884, and thus ampg = @ ~ 5.26.

There was however uncertainty on how to deal with the white sound signal, since the ISO
226 standard is based on sine tones alone, meaning white noise would not fit the model. In
the end, it was decided that it would probably be for the best to pick a value that sounded
roughly the same as the primary color sound signals, at the cost of it being a subjective
choice. It was agreed upon that ampy = 4 was an alright selection for the whiteness.

ISO 226: https://www.iso.org/standard/34222.html
ZPicture taken from:
https://upload.wikimedia.org/wikipedia/en/thumb/c/c2/Lindos3.svg/800px-Lindos3.svg.png
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Lastly there were the sonification
parameters for anything related to
distance, which was the amplitude
for the tick sound, and its min-
imum and maximum frequencies. 0
This could also not be based on
the ISO 226 standard, as it was a
ramp wave, and filtering it was out
of the question as it would change -20
its sonic qualities so that it would

+20

+10

., (not
~defined)

Gain dB

no longer sound like a tick. There- 20

fore the tick received the same .40

treatment as the white sound sig-

nal, and was given a amplitude of .50 i
ampgy = 2.5. When it came to 10 100 1000 10k 100k
the frequency range, the minimum ITU- R 468 (blk), A-weighting (blue), and inverse ISO 226 (2003) (red)

was selected to be min_freq =

1H z, as anything lower would have Figure 6.1.2: A plot of different weighing functions
more than one second delay be- used based on the ISO 226 standard. In our case, what

tween each tick. The reasoning for was of interest in this graph was the inverse I1SO 226

this choice, is that too much delay P/t in redﬂ

between each tick will make it dif-

ficult for the user to know if a distance was found or not, since the software generates no tick
if the distance value is invalid. The highest frequency was chosen to be max_freq = 6Hz,
which we felt was justified as any higher frequencies made the tick sound more like a con-
tinuous tone, and less like a tick.

There is also a need to define the minimum- and maximum distance, which we base on the
calibration data in Section [6.1.1] so only a distance in the range of 30cm and 300cm will
generate a tick sound.

6.2 Testing

As with every prototype using sensors, there needs to be done tests or experiments were
performance, reliability, accuracy, and other sensory qualities are under scrutiny. Thus we
planned and executed tests for the following concepts; color recognition, distance recognition,
and a combination of both color and distance. These tests will be referred to as 'the color
test’, the distance test’, and 'the combined test’.
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Before each test, the subjected was trained in analyzing the sound signals provided by the
software sonification procedure, such as relating sound signals to colors, or differing distance
values in centimetres. The combined test would then be the final test, where the subject
would need to utilize his training and experiences in conjunction with the the prototype, so
that he could decode the provided sound into visual information about the environment to
solve a problem.

The training and testing of the selected subject was all done in a relatively quiet and un-
contested, medium sized student work room at NTNU. All of the three prototype tests with
a subject were carried out in May 2019, more specifically, color recognition on the 21st,
distance recognition on the 23rd, and finally combined on the 24th.

When training and doing tests, the idea was to remove all variables that would complicate
the mental tasks the subject would have to do during the experiments. We therefore decided
that using a laptop to run the software was an alright decision, as it should not have had a
particular impact on the prototype tests.

Regular consumer earbuds were used in place of the bone-conductive earbuds during the
training and testing. The reasoning for utilizing these consumer earbuds was that they had
longer cables than the bone-conductive ones, which lead to a less restrictive environment for
the subject since a laptop was being used for tests. We believed this was fine, as the main
goal of the the color and distance tests were to see if the subject could mentally decode the
generated sounds into useful information.

One of the project members, Jorgen, was the trainer, whereas another member, Magnus,
was the subject. The subject was not visually impaired except for partial color blindness,
but the training and testing processes elaborated on in this section can still be used on
a visually impaired person. Of all the members, the subject was chosen because he had
personal experience with music, and thus had a good set of ears. We thought a subject
with good ears would more closely match the well developed hearing of a visually impaired
individual, as it becomes second nature for such an individual to rely on their hearing to aid
in understanding and navigating their immediate environment.

To train the subject with controlled inputs through the LabVIEW application, one has to
set the ’training_sonification’ conditional disable symbol in the software project to 'true’,
which will then let the trainer manually input what values he wants for red, green, blue,
white, and the distance. White is technically calculated based on the RGB values during
normal operation, but we added the option to set it manually so that the trainer can more
easily decide what sound signals will be generated by the software.
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6.2.1 Training color recognition

This training exercise introduces the subject to the unique sound signals that are used to
represent red, green, blue, and white. It also lets the subject experience combinations of these
unique signals, as it is crucial that the subject learns to identify each of the four components
when they are playing at the same time. The subject is gone through the exercise in such a
way that the association he has for each unique signal and its conceptual color is mentally
solidified. This is done with the intent of granting the subject the ability to guess what
colors the sound represents, similar somewhat to how individuals with synesthesia perceives
color through sound. All that is needed to do this exercise a computer running the software,
and earbuds to play the application sounds for the subject. The tick signal is turned off in
the application settings so that only the color signals can be heard.

The color training exercise in steps

The exercise consists of the following steps:

1. In the first step of the color training process, the subject will get used to the four
unique color signal sounds. To do this, the trainer begins by introducing the subject to
the sound of all the three basic color signals at full intensity, including the white noise
which indicates whiteness. Subject is then told that he can ask for a single sound, red,
green, blue, or white, and the trainer will activate that sound manually. The subject
is for the rest of this step given free reign to listen to each of the four signals until he
feels confident enough in that he can recognize any of them when heard.

2. A small test is then done on the subject, so as to further solidify the connections that
the subject has with the four signals, and their corresponding colors. The trainer picks
at random one of the four color signals at full intensity, and then the subject guesses
what color the signal represents. The trainer then replies what the actual color was,
and notes down whether the subject was correct or not. This is done twenty times
to make sure that all four unique signals are checked multiple times with the subject.
If desired, this step may be repeated as many times as the subject agrees to, and then
the accuracy for each execution may be compared to see how the subject has improved
over time, if needed.

3. Moving on to the third step, combinations of two color signals are exposed to the
subject, but is restricted to red, green, and blue signals, since whiteness is in reality
derived from those three colors, meaning it also indicates how desatured the color
is. Desaturated color training is not included in this training exercise. The color
combinations are referred to as the secondary colors. The secondaries are shown in
Table [6.2.1 As with step one, the trainer introduces the sound of the secondary
color signals, informs the subject what colors the signal is composed of, and what
the resulting secondary color signal is called based on the table. The subject then
familiarizes himself with the secondary color signals until he is ready for the next step.

79



4. Same as step two, but with the secondary color signals instead of the four unique
color signals. This time however, only fifteen random secondary color iterations are
executed for the subject. The step may be repeated however many times if wanted.

Table 6.2.1: How the three secondary colors are represented
through combinations of RGB values.

Color combination Resulting color
Red (255) 4+ Green (255) | Yellow (255,255,0)
Green (255) + Blue (255) | Cyan (0,255,255)

Red (255) + Blue (255) Purple (255,0,255)

Results

The time spent, and observations made for each step is summarized in the following list:

1. Took five minutes. Subjected tried to replicate the sounds vocally in order to aid in
memorization.

2. Took ten minutes. The subject guessed correctly on all twenty samples, therefore
giving a accuracy of 100%.

3. Took five minutes. Subject focused on identifying what signals the combined signals
were made of.

4. Took roughly twenty minutes, since the subject spent more time listening to the com-
bined signals, and the trainer needed more time to properly change to a new signal.
The subjected managed to guess right on fourteen of the fifteen samples, leaving him
at an accuracy of 93.3%.

After completing the exercise, and then calculating the accuracy results, it was decided that
the subject was now ready for the color recognition testing.

6.2.2 Testing color recognition

In the same vein as in the original Colorophone paper, colored yogurt containers were used
as objects for the subject to examine. The task for the subject was to correctly guess the
color for every container that was examined with the prototype, which meant through sound
only, and no visual information. It is very important to note however that the results from
this test will be unreliable if the subject knows about the colors of the containers beforehand
through experience or having been told.
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There were five different types of yogurts of different colors, and they can be seen in Figure
6.2.1| as beige, red, green, yellow, and blue. With these colored containers we were able to
provide sound signals that consisted of interesting combinations of red, green, blue, including
the calculated whiteness. The RGBW colors calculated by the software of each container
was noted down, and can be seen in Table Do note however that the lighting in the
room possibly had a big impact on how the stereo camera perceived the colors.

Figure 6.2.1: Yogurt containers used in the color recognition testing.
Top: beige, red, green. Bottom: yellow, blue.

Table 6.2.2: RGBW wvalues calculated by the prototype software when the ZED
Mini is looking directly at one of the yogurt containers shown in Figure

Container color ‘ RGBW values from software
Beige (20,20,0,104)
Red | (158,0,18,0)
Green (0,115,51,0)
Yellow | (77,102,0,0)
Blue (20,0,140,0)
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Testing preparation

Subject wears the prototype con-
nected to a computer so that it rests
above the nose ridge, then tightens
the prototype so that it comfortably
exerts force towards the frontal bone
of the skull. Earbuds of appropri-
ate length connected to the computer
are placed in the ears. If the subject
is not visually impaired, cover the
eyes so that the subject can not see,
which we did for our testing as shown
in Figure [6.2.2l The tick sound is

turned off in application settings, as Figure 6.2.2: The subject prepared and
they are of no interest in this partic- ready for color recognition testing. The
ular test. hood is acting as a blindfold.

How to conduct the test

Trainer randomly selects one of the five yogurt containers, and then gives it to the subject.
The subject then examines the container with the prototype and reply what color they
think the container is. This is performed twenty-five times to make sure all the different
containers are examined multiple times, with the real color and subject reply written down
by the trainer for each sample. Since the subject is assumed to not be specifically trained
or expected to use perfectly correct color lingo for describing colors, combinations of simple
colors may be used like ’slight yellow with strong white’ for the beige yogurt. It is the trainers
responsibility to decide if the replies used to describe the color correctly matches the color of
the container. An accuracy percentage is then calculated to check how successful the subject
was overall at individually identifying the colors of the containers.

Results

It has to be specified that the trainer in our case had to hold the container infront of the
prototype so that it could be properly examined, since there were issues with the reflected
lighting coming from the outside, which made it hard for the subject to know where to look
on the container without focusing too much on the highlights. This was considered to be an
alright exception to the test, as we would later in the combined test check how the subject
managed to utilize the prototype on his own without human interference.

The test took thirty minutes, and the results were not quite as expected. Of the all the
twenty-five samples, only eight of the replies given by the subject were considered to be
correct, giving an accuracy of 32%. It was soon realized that a critical mistake had been
made. We had assumed that the subject did not know about the yogurt container colors
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beforehand, which was clearly false as he had seen them before. The results were thus not
satisfactory, and ended up being unreliable when gauging the subjects ability to decode the
color signals provided by the prototype. Due to this fluke in procedure, it was decided that
the test would be done one more time after the subject had done a improvised training session
with the containers, with the assumption that he knew only one of those five containers would
appear in the test. In this improvisation the subject learned to recognize the five containers
and their corresponding color name in a span of thirty minutes, meaning there would be a
one in five chance of him guessing a container correctly during the second test run.

The second test took twenty minutes, and had pleasing results. Out of the twenty-five
randomly chosen samples, the subject guessed twenty-three samples correctly, an accuracy
of 92%. There was a clear improvement in performance, which was hypothesised to not only
be caused by the improvised training, but also because the list of possible replies had been
reduced to only five choices.

Although we can not make a perfect case for the first color test, it can be concluded that
there was a clear improvement in performance when the subject was trained to recognize
the sound of an object that had been taken from a group of known, and physically similar
objects that wore unique, and recognizable base colors.

6.2.3 Training distance recognition

The point of this training exercise is to introduce the subject to the tick sound signal, and
aid him in mentally connecting actual distances to the frequency of the tick sound heard.
The idea is that the subject should be able to somewhat gauge the distance to whatever
object he is looking at, and then create a mental map in his head. All that is needed for
this exercise is a computer running the software, and earbuds to send sounds to the subject.
Color signals are turned off in the application settings so that only the ticks can be heard.

The distance training exercise in steps

The exercise consists of the following steps:

1. The trainer lets the subject hear what the tick sounds like at minimum- and maximum
distance, and notifies what distance is being represented. The trainer then linearly
increments the distance from the minimum to the maximum acceptable distance value
by a value X in centimeters as defined by the trainer, so that the subject can get used
to how the frequency changes with distance. The trainer must remember to always
tell the subject what the new distance is so the subject can memorize it. The subject
is then free to ask for any distances, and listen to the resulting ticks until he feels
confident in that he can mentally decode tick frequency to distance information in
centimeters.

2. This step is done to solidify what the subject has learned in the previous step. The
trainer randomly selects a distance value that resides within the minimum- and maxi-
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mum distances, where it needs to be a number rounded to the nearest ten. The subject
is placed in such a way that he under no circumstances will be able to deduce what
distance values the trainer enters into the software. The subject guesses a distance
value in centimeters, and the trainer notes down the response as well as the actual
distance value. Do twenty of these selections. When complete, for all twenty sam-
ples, calculate the subject’s accuracy, where any guess within a certain threshold of
the actual distance is considered to be correct. The trainer may use any threshold he
desires.

Results

The distances covered were based on the minimum- and maximum distances defined in
Section [6.1.2] which was 30cm and 300cm. Initially the trainer set X = 10c¢m, but the
subject expressed concern when he found out that he would need to memorize 3001830 =27
data points. So the trainer changed it to X = 30cm instead, meaning the subject needed to

memorize 9 data points only.

The training exercise went as follows:

1. Roughly fifteen minutes, as the subject needed to concentrate and spent time to mem-
orize the tick frequencies. Especially the ticks at distance limits.

2. Took five minutes. The trainer had readied a set of twenty random distance samples
to input for the subject to guess beforehand. The data can be seen in Table [6.2.3]
For the threshold value the trainer decided that 30cm would be an alright choice when
calculating the accuracy, meaning the subject should have been able to guess correctly
each time if he had memorized the 9 data points, and could spot the difference in
frequency. Thus the accuracy was calculated to be 70%, a rather modest result.
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Table 6.2.3: The distance results in centimeters after performing step
two of the distance training exercise.

Sample || Real [cm] | Subject [cm] || Difference [cm]
1 37 30 7
2 270 200 70
3 130 110 20
4 200 200 0
5 145 150 )
6 300 300 0
7 110 110 0
8 30 59 25
9 47 30 17
10 72 64 8
11 210 170 40
12 290 300 10
13 147 100 47
14 180 177 13
15 47 100 53
16 160 120 40
17 92 80 12
18 39 30 9
19 165 135 30
20 52 90 38

6.2.4 Testing distance recognition

In this test we will get to see how good the subject is at determining distance based on the
frequency of the ticks that are being generated by the prototype based on what the ZED
Mini stereo camera focuses on. Since we are only interested in the ticks here, the color
sound signals are turned off by setting the conditional disable symbol 'no_color_sound’ in the
software project to 'true’.

The task given to the subject is that he correctly guesses the distance between him an an
object while sitting still. The object will be placed at random distances away from the
subject, and must reside within the defined minimum- and maximum distance range for the
prototype.
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Testing preparation

Perform the test in a quiet room that spans
atleast the length of the maximum distance the
software can handle. Place tables that can cover
the same distance in addition to the minimum
distance. Then go on to find a light, cube-like
object of atleast 1m in height that can stand up-
right on a flat surface without falling over. Mark
the vertical center of the highest flat side of the
object with black tape.

Lay the tables next to each other so that they
form a line that cover a length of the maxi-
mum defined distance plus the minimum dis-
tance. Place a chair at the end of the tables so
that it is perpendicular to the table. From the
end of the table where the subject is sitting, fas-
ten the start of a tape measure, then measure up
to the maximum distance and more. Fasten the
end of the tape measure as well so that it does
not go anywhere if touched. Place a table next
to the subject’s chair. This is where the laptop

will reside. Subject sits down on his chair, is Figure 6.2.3: What our setup looked
instructed by the trainer to stare straight ahead like for the distance recognition test-
towards the wall, and then mounts the prototype ing.

that is already connected to the laptop onto his

head.

How to conduct the test

The trainer places the object down one of the marked areas so that the marked flat side
is pointed towards the subject. Try to make no sound when placing the object or walking,
as this will give hints to the subject on how far away you are. The trainer notes down the
actual distance, and the distance that the prototype software estimates. Trainer then asks
the subject to guess the distance, and notes down the reply. This is done twenty times.
When complete, for all twenty samples, calculate the subject’s accuracy against what the
software estimated the distance to be. Any guess within a certain threshold of the software
distance is considered to be correct. The trainer may use any threshold that he so desires as
long as its justified.
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Results

Our setup can be seen in Figure [6.2.3] where the head of the subject was guided by the
trainer so that box was in the center of the prototype vision. The trainer also made sure
that the prototype was roughly above the start of the table to make sure the estimated
distances were more true. In Figure you can see what prototype saw when the box
was placed at the maximum distance of 300cm. Notice that the software has estimated a
distance that is 30cm off the real value.

The results of the tests can be seen in Table [6.2.4 We choose the threshold to be the same
as the one used for the training; 30cm. This indicates that the subject correctly guessed the
estimate given by the prototype sixteen out of twenty samples, meaning he had an accuracy
of 80% with the threshold chosen, which actually shows a slight improvement when compared
against the training accuracy of 70% that was calculated in Section The prototype
seemed to reliably estimate distance within 30cm to 300cm, with an accuracy of 65% within
a margin of 5em.

There were potential sources of disturbance however, such as audible sound being emitted
whenever the box was being moved, which the subject could have unconsciously picked up
on when guessing the distance. This was an unwanted side effect that lead to the test results
being inconclusive in determining whether it was the tick frequency alone that had helped
aid the subject. This prototype is meant for the visually impaired however, and they will
without doubt make good use of all kinds of real sounds to determine how far away something
is, so the results were thankfully not entirely without merit. We therefore conclude that the
prototype has done well in fulfilling its purpose of giving useful distance estimates to the
user, but that there were definitely problems, especially when estimating longer distances.
A potential improvement to these faulty estimates are later elaborated on in Section [6.3.3]

color

Distance [cm] Distance found? fps
) I Ca—
disparity

9.23077

Figure 6.2.4: The point-of-view for the prototype when the box was placed at 300cm.
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Table 6.2.4: The distance results in centimeters after having done the distance recognition test.

Sample || Real [cm] | Software [cm] | Diff. Real & Software [cm] || Subject [cm] | Diff. Software & Subject [cm]
1 30 32 2 60 28
2 140 148 8 140 8
3 240 230 10 200 30
4 300 275 25 280 5
5 190 188 2 150 38
6 170 172 2 160 12
7 130 132 2 100 32
8 90 91 1 55 36
9 160 162 2 150 12
10 50 51 1 40 11
11 210 200 10 180 20
12 230 225 5 200 25
13 170 170 0 145 25
14 80 80 0 60 20
15 130 130 0 120 10
16 290 275 15 300 25
17 200 194 6 190 4
18 270 265 5 265 0
19 300 273 27 240 33
20 70 68 2 50 18

6.2.5 Testing both distance and color recognition

For this test we want the subject to be able to utilize the distance and color estimated by
the prototype to solve a problem without receiving help from anyone else. It is important
that the problem can only be solved if the subject utilizes the prototype, at the assumption
that he is blind. He is allowed to use touch to orient himself in this test, but the test is
made so that he will still need the prototype to solve it. The point of test is to prove that
the prototype can be used to solve a 'impossible’ problem for a completely blind person.

The subject is given the task of finding a balloon of a certain color in a room, which can
either be white, red, yellow, teal, and blue. There will be five balloons of equal size randomly
fastened to a table with tape, and they will all have a unique color that is one of the
aforementioned colors. The balloons should be indistinguishable through touch. Before
doing the test the subject is given fifteen minutes to memorize the color signals given by
each balloon color.

Testing preparation

The test will be done in a room that is somewhat square and quiet, while covering at least
an area of 80m? so that there is plenty of space for the subject to move in. The table of
balloons is placed in the opposite side of where the room entrance is, and it is assumed that
the subject knows about the location of the table before the test.

The element of surprise in this test are the obstacles that will be placed at random positions
in the room, which could be stacks of chairs or other tall objects. While these obstacles are
placed, the subject must be outside the room so that he can not discern where they have
been placed beforehand. The trainer will be determining the obstacle placements.
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This test also requires an assistant trainer that will lead the subject into the room after a
signal has been given by the trainer that the test is ready.

How to conduct the test

The subject will find himself at the entrance of the room, and will then be told by the trainer
what balloon of certain color needs to be identified. The trainer starts a stopwatch that runs
until the test is complete. The subject now has to find the table of balloons and make the
guess. After the subject has given a guess, the trainer stops the timer, then write the time
spent and if the subject guessed correctly.

Results

Since our subject was not blind, his eyes was covered with a dark hood that could not be
seen through. The computer connected to the prototype ran the software, and was placed
in a backpack for the subject to wear. The prototype rested over the hood at the front of
the subject’s skull. The assistant trainer was selected to be Jon Petter, a member of this
project.

We decided to the the test three times, and for each one the placement of the balloons on
the table was randomized. We added progressively more and more obstacles for each test to
make it more difficult for the subject to get to the table of balloons.

For the first test the subject was asked to identify the red balloon. It took 2 minutes and
12 seconds, and the subject guessed correctly. A picture of the test in action can be seen in

Figure

Figure 6.2.5: The subject looking for the red balloon in the first test.
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In the second test the subject was asked to identify the blue balloon. It took 2 minutes and
47 seconds, and the subject guessed correctly. A picture of the test in action can be seen in

Figure [6.2.6]

Figure 6.2.6: The subject looking for the blue balloon in the second test.

In the third and final test the subject was asked to guess the white balloon. This time it took
6 minutes and 6 seconds because there were significantly more obstacles, but the subject still
guessed correctly. A picture of the test in action can be seen in Figure [6.2.6

Figure 6.2.7: The subject looking for the white balloon in the third test.
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The subject did very well on the first two tests in terms of time, but then he got disoriented
in the third test and ended up getting lost in the room. It ended up with him finding the
walls and following them at a slow pace until he found the table of balloons. He did however
correctly guess right balloon for each test. In terms of probability, there was a (%)3 = 0.8%
chance of this happening if he guessed randomly, and therefore this was rather pleasing
results. The subject also pointed out that several times during the tests he could from the
tick frequency know’ that there was something close right infront of him, and that he was
therefore able to avoid it by going around it without needing to bump into it or touch it.
This behavior was witnessed by both the trainer and the trainer assistant as well. There
were however moments when the subject got confused because of the tick spur bug that is
elaborated on in Section [5.3.91

From the combined tests done we can thus conclude that the prototype helped the subject
solve the test. The tick sounds also worked in tandem with touch to aid the subject in
navigating the room.

6.3 Room for improvement

Although we had a working prototype, there is definitely areas of importance that could
be improved. This section elaborates on changes that could potentially lead to a better
prototype, be it by making it more accurate, user-friendly, or robust.

6.3.1 Error handling

The prototype software lacks ways of properly handling errors, which in turn can lead to
situations where the user will simply get a cryptic error message. Thus the software needs a
error handler that will properly take care of errors if they should occur, so that the software
does not crash spontaneously. For a visually impaired person, showing a error in a text box
is not helpful, so it is wiser to utilize a error handler function that somehow silences the
sonification audio, then plays a unique error message sound signal to notify the user what
error came about. This would on the flip-side require that the user is trained in recognizing
each unique error sound message.

6.3.2 Color accuracy

At the moment the mean color is calculated based on a percentage p of the center of the
center pixel row in the left image, which we will refer to as the center row color method.
Although this simple method does give the prototype a color value, there are often situations
where it will be flat-out wrong when looking at an object that occupies less space than the
percentage p. This can be circumvented most of the time by instead calculating the mean
color within a defined area of the left image, which we will call the area color method. This
will include the color height area of the object. This will in turn cause the color value to
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be more accurate if the object plays into the strength. If the defined area is too large, and
the object has for example some green and some red, then the color will be calculated to
be yellow, which is incorrect. On the other hand if the defined area is too small, then the
color value will be prone to noise in the image, thus it will radically jump between different
colors. Thus if this method is utilized, the defined area must be properly optimized so that
it is large enough to avoid spurious changes in color values, while also being small enough
so that it does not produce wrong color combinations. If the optimization is unsuccessful,
then the area color method could turn out to be more inaccurate than the center row color
method.

The fact that the prototype software only utilizes the left image at the moment comes with
its fair share of problems. First of all it is not intuitive for the user to need to look at an
object with the left side of the face, and not the center. The proposed solution is therefore
to calculate the color based on both the left- and the right image. The pros of this is that
the user can look directly at the object when examining the color. On the other hand, this
will crash with how the distance is estimated, since the distance calculation method uses the
left image as the reference, meaning if the user looks directly towards an object, the distance
for whatever is in the center of the left image is calculated. The distance calculation method
was elaborated on in Section [5.1]

Another, but more obvious solution for increasing the accuracy of the color extraction is by
utilizing a stereo camera that reproduces colors better. Although this would require added
support in the prototype software for the new stereo camera, not to mention a new 3D design
for the housing.

6.3.3 Distance range, stability and accuracy

As demonstrated in Section[5.2.2] the distance accuracy on longer ranges can be improved by
capturing stereo camera frames with a higher resolution. However, accuracy alone is not the
most inherent room for improvement concerning the distance function. The stability, and
the systems interaction with the user is just as important. Better stability could possibly be
achieved by developing more complex methods for image data analyzing.

6.4 3D- Design and prototype

During our designing process, we hit three different obstacles. The first obstacle was choosing
a reference human head, we simply measured our heads and our noses to get a design that
would fit us. We ended with 3 different designs for the nose pads, none of them had a
universal comfortable fit. To elevate the design, one needs to 3D scan a large selection of
people, with different head sizes and shapes of course. The 3D scanned models would aid
in creating more organic and comfortable shapes for the nose pads and the temples. The
second obstacle was the small selection of available materials, 3D printed PLA and PETG
are simply not strong enough to create a minimalist and elegant design.
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We recommend that the next iteration should be produced with a nylon-based material.
Unfortunately, nylon require a substantial volume of heat to reach it’s melting point, most
traditional 3D printers are not capable of utilizing this material. Other production methods
such as Stereolithographic 3D printers or injection molding may be required. During the
research phase we searched vigorously for a compact USB type-c cable that has the right
orientation and true USB 3.0 speeds, unfortunately we never found a proper solution. We
believe that a custom cable specifically made for this prototype would tremendously help in
achieving more comfortable experience.

93



Chapter 7: Conclusion

7.1 Were the requirements satisfied?

For the first requirement specified, we were asked to compare different technologies used in
stereo camera systems. During the research phase we looked into two technologies commonly
used for consumer stereo cameras, more specifically IR stereo triangulation and passive
triangulation.

When selecting a stereo camera that would fit the requirements made by the customer, we
had to make sure that it could be integrated with LabVIEW. This went rather smoothly,
since capturing stereo camera frames from the ZED Mini is easily achieved through the use
of the NI-IMAQdx module for LabVIEW. Another condition given by the customer was
that the stereo camera could reproduce colors well. While the ZED Mini has difficulties with
reproducing red colors in both dark and well lit environments, it stands its ground quite well
in normal lighting conditions at 450/xz. The last criteria for the chosen stereo camera was
that it needed to be small enough for it to be integrated into what was at the beginning
of this project, referred to as the primary Colorophone design. The customer had no issue
with us designing our own housing instead of using the old design, and so we consider this
criteria to be satisfied.

The third fundamental requirement was that the prototype could get the distance from
a defined point in the form of digital information. The implemented distance calculation
method is developed from scratch in LabVIEW, and is proven to give relatively good results
considering the simplicity of the method. The prototype testing done demonstrated that the
prototype is able to calculate the distance based on stereo vision, relatively accurately, up
to about three meters. The accuracy is best at lower distances; which is closely related to
the camera resolution used for the prototype.

One of the supplemental requirements was that the existing Colorophone color coding method
could be integrated into the prototype software. This was not difficult, since it could be
realized by just utilizing the existing color coding method on the left image in the stereo
camera frames.

It was asked of us to expand Colorophone into a system that could provide the user with
visual echolocation. Some of the coding work had already been done for this one, in conjunc-
tion with the third fundamental requirement, so it was almost just a copy and paste job into
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the software application we developed for the prototype. Distance information was conveyed
in the form of tick frequencies. When testing the prototype with a subject that had been
trained to recognize the tick sounds, the subject correctly guessed within a margin of 30cm,
70% of the distances. Although a rather large margin, it still worked as a concept, and a
potential interesting future project would be to test how much training would be needed for
a subject to get a almost perfect accuracy with a small margin of 5em.

7.2 Are stereo cameras viable for Colorophone?

There is much to be desired when imagining how one could cram a physical scene of vibrant
colors and objects into auditory signals, but when thinking in terms of colors and distance
alone, our prototype shows that there is definitely usefulness in utilizing stereo cameras to
provide distance information. In spite of its shortcomings, there is much room for improve-
ment of the prototype, be it more reliable distance estimation through clever algorithms, or
a more robust prototype housing.

7.3 Future projects

Stereo cameras opens up a window to a world of possibilities by taking inspiration from
how humans visually perceive light, and we believe it is a step in the right direction for
Colorophone. Although stereo cameras as gadgets are only in their developing stage, there is
no doubt that they will see more widespread use in the coming future. Not only will we see
increased usage of AR devices that blurs the line between the virtual world and reality, but
also stereo vision for the smartphones that have conquered the world in just a decade alone.
Considering the fact that Colorophone has already developed an application for smartphones
that lets users sonify colors; the idea of providing visual echolocation with AR headsets or
smartphones through Colorophone might not just be a pipe dream.
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Definitions

ABS Acrylonitrile butadiene styrene. A common thermoplastic polymer, widely used in
the 3D printing community for durable parts.

AR Augmented reality. Adds the possibility to combine information from the physical world
with virtual data, a good example is the use of heads-up displays in cars that projects
vital information such as speed on to the windshield of the car.

Baseline The fixed distance between the two lenses in a stereo camera module.

Binocular disparity The difference in location of objects within the left and right image
in a stereo vision system [19]. It can also be referred to as disparity in this thesis.

CAD Computer-Aided Design. The application of computers to create and analyze a design
in a digital space.

dB Decibel. A measurement unit that expresses the ratio of a quantity on a logarithmic
scale.

DBL Double data type. A double-precision floating-point format that occupies 64 bits in
memory, and represents a fractional number.

eMMC Embedded MMC or embedded MultiMediaCard. A type of storage unit that is
solid, i.e no moving parts, has decent speeds and is used in smartphones, other con-
sumer electronics, and some budget friendly laptops such as ultraportable laptops.

FFF Fused Filament Fabrication. A 3D printing process that continuously feeds filament
through a hot and and deposits, and builds the 3D model layer by layer.

FIFO First In First Out. Normally used when describing how a queue handles elements.
The first enqueued element is the first one that is dequeued.

Filament Thermoplastic feedstock for FFF 3D printers. A long piece of plastic string on
a spool that is fed into the printer. There are many different types of plastics used
with different properties and sizes, the two standard sizes are 1.75mm and 2.85mm in
diameter.

Firmware Software installed for hardware, and performs low-level control of the device.

Focal length The distance between the lens and the focal point in an optical system. In a
camera, the light sensor is located in the focal point. The relation between a camera’s
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focal length and it’s field of view is inversely proportional [26].

FPGA Field-programmable gate array. A integrated circuit (IC) that give developers the
ability of programming low-level hardware.

GUI Graphical User Interface. Is used to describe the interface that users interact with in
software.

IR Infrared Radiation. Electromagnetic radiation invisible to the human eye, with longer
wavelength than visible light.

LPF Low-pass filter. A filter that only passes frequencies that are lower than a defined
cutoff frequency.

lux abbr. Ix. A unit that measures the luminous flux per unit area.

NI-IMAQdx A driver package that is included with the NI Vision Acquisition Software
module, that aid in setting up and utilizing cameras in LabVIEW.

OTG On The Go. A specification that allows a USB device such as smartphones and tablets
to act as a host, allowing other USB devices to be connected to them, such as storage
drives, keyboard, and mice.

PET Polyethylene Terephthalate. A plastic commonly used in bottles, filament for 3D
printing, and textile products, such as fleece.

PETG Polyethylene Terephthalate Glycol-modified. A glycol modified version of PET,
often used as filament for 3D printing.

Pixel abbrv. px. A physical point in a digital image, and contains color information for
red, green, and blue.

PLA Polylactic Acid. A biodegradeable plastic made by renewable resources such as corn
starch, widely used for 3D printing.

PNG Portable Network Graphics. A lossless file format commonly used to represent images
utilizing transparency.

sRGB standard Red Green Blue. A default color space commonly used in monitors and
printers.

Stringing A unwanted side effect that can occur when 3D printing, where a string of residue
is left between gaps in a 3D print.

ToF Time of Flight. A technique used to estimate distance based on stereo camera frames.

TPU Thermoplastic Polyurethane. A common form of elastomer with a very high flexibility
and durability, widely used for 3D printing when the print needs to be flexible.

RGB an additive color model that incorporates red, green, and blue as elementary colors
to represent more complex colors.

RGBW abbrv. for Red, Green, Blue and White.
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SDK Software Development Kit. A set of tools specifically designed for use in developing
software for hardware- or software products.

VR Virtual Reality. Allows the user to interact in a computer created reality with the use
of stereoscopic head-mounted display.

Stereo vision A vision system that includes two sets of lenses or eyes. Has the ability to
provide depth perception in addition to other visual perceptions.

Stereo camera A camera that consist of two image sensors, and stitches the two images
into one image frame.
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Appendices

A Hardware

A.1 MT-906 Light Meter

Since light has a big influence on how cam-
eras operate, it was necessary for us to get
our hands on a light meter so we could
measure how much light was present when
comparing the ZED Mini and the Intel
RealSense D415 against each other. We
therefore acquired a MT-906 Light Meter
(see Figure from a local Clas Ohlson
store, and was used for measuring the light
level when comparing Stereolabs ZED Mini
and the Intel RealSense D415. It has a
range of 0lx to 100000lz, and a accuracy of
+ 3% rdg + 0.5% f.s for light less than
10000lz, and + 4% rdg + 10% dgts. for
more than 10000/x. The light meter in ques-
tion is rather crude, and therefore not the Figure A.1: A picture of the MT-906
most accurate measuring device, but for our light metelﬂ

purposes it was good enough to give us an

estimated light level.

A.2 Calibrated monitor, EIZO ColorEdge G2730

In order to test how well the stereo cameras read colors, we utilized a specialized monitor, a
EIZO ColorEdge CG2730 (see Figure that we borrowed from our customer. It is a 27
inch monitor with a 2560x1440 screen resolution that can display a wide range of colors. A
typical monitor uses 8-bits to represent colors with values from 0 to 255, but this monitor

IPicture taken from:
https://www.clasohlson.com/medias/sys_master/9580195872798. jpg
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uses 10-bits with a 16-bit look-up table, meaning that the monitor has the capability to
display over one billion (1024%) unique colors, compared to a normal monitor that only has
16 million (256%). The monitor also comes with a built-in calibration sensor for calibrating
the colord?l
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Figure A.2: A picture of EIZO ColorEdge CG273(f]

2See https://www.eizoglobal.com/products/coloredge/cg2730.
3Picture taken from:
https://www.eizoglobal.com/products/coloredge/cg2730/product_photo_01.png
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A.3 AAEON UP Board

During the research phase, the AAEON UP Board (see Figure was being investigated as
a probable mobile computer that could partner up with the Colorophone glasses. It carried
decent specifications for its size, being no larger than a credit card. It came bundled together
with the Intel RealSense R200 stereo camera that the team received from the customer at
the start of the project.

The UP Board came with a quad core Intel® Atom™ x5-z8350, 4 GB RAM, and 32 GB
of eMMC storageEl. In addition, 4x USB 2.0, Ethernet, and a USB 3.0 OTG connection was
included. The board supported several Linux operating systems, including Windows 10. It
was capable of using LabVIEW, but was in the end ruled out due to the lack of peripherals
like a monitor, or a keyboard, which would have made it impractical to use for field.

Figure A.3: The AAEON UP Board without the aluminium cooling block and
fan attachedﬂ

4See https://www.aaeon.com/en/p/up-board-computer-board-for-professional-makers.
SPicture taken from:
https://www.aaeon.com/en/p/up-board-computer-board-for-professional-makers
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A.4 myRIO

The myRIO (see Figure is a hardware device developed by National Instruments, and
is powered by LabVIEW. RIO stands for Reconfigurable I/O. The myRIO has an onboard
FPGA in addition to the processor. The FPGA can be programmed to run specialized tasks
very fast, and therefore it is perfect for use in real-time-systems. To use the myRIO as the
processing unit in the prototype, the colorophone software architecture must be specially
designed for the myRIO. The project was from the start based on using a windows computer

as processing unit. The myRIO was not used for the prototype because the amount of time
needed to adapt the software with the myRIO was too much.
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Figure A.4: The myRIO device by National Instrumentsﬂ

5Picture taken from:

https://www.digitec.ch/en/s1/product/national-instruments-782693-01-hardware-ni-myrio-
19-development-boards-kits-850369
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A.5 HP Pro Tablet 608 G1

It was of interest that we had utilized a lightweight computer
capable of running LabVIEW. After discussing this with the
customer, the HP Pro Tablet 608 G1 (see Figure we
thought might be a good option as it was already confirmed
by the customer that it had the ability to run LabVIEWf]
The tablet comes with a quad core Intel Atom®) x5-Z8500
processor, 4 GB of RAM, 64 GB of storage, and a 21 Wh
battery. In addition, it comes with a single USB-C connec-
tion, which is convenient as the ZED Min: also has a USB-C
connector. It was however discovered, during testing of the
prototype, that the tablet performed subpar to what we had
hoped for. There was also issues with the audio when run-
ning the Colorophone software. A laptop was therefore used,
instead of the tablet, to run the software during testing.

"Picture taken from:

Figure A.5: HP Pro Tablet
608 that were used during

testingﬂ

https://dustinweb.azureedge.net/image/149256/400/320/hp-pro-tablet-608-gl. jpg

®See https://support.hp.com/lv-en/document/c04718256.
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A.6 Tripod

When testing and calibrating the distance calculation

method with the ZED Mini, we needed a tripod that could hold the stereo camera, be
adjustable in height, and most importantly, be stable. The tripod was supplied by our cus-
tomer, and is a Velbon DF 60 (see Figure , with movable joints for yaw, pitch, and roll,
while also having an adjustable height. The tripod did not have a lot that would let us
properly connect the ZED Mini onto it, so a makeshift holder was constructed through 3D

printed parts. The custom housing could also hold a measuring tape, which made it possible
to measure the distances more easily.

>

09 4a uoalPA

Figure A.6: Tripod with the custom 3D printed holder, and the ZED Mini camera attached.
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B LabVIEW code

B.1 main.vi

2. Run GUI and subprocesses in parallel.

GUI cormnmunicates with message to the

1. Initializes and declares the subprocesses, and they respond with user 3. Closes the application by releasing

configuration data. events. data (queues) frem memory.
INITIALIZATION RUMN CLOSE
init.vi guivi closewi
oz
INT Gl CLOSE
camera.vi
|
clockwvi
CLOGK
sound.vi
SEIU;ID
legger.vi
=
LOGGER

Figure B.1: This is the .vi that must be run to launch the application.
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ini
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configuration_data

configuration_data out

alizing FIFO user event queues for 'Clock’,
‘Camera’, '5ound’, 'Logger, and 'Error messages’

Amount of events created

Payload
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gui_events

:_cluster

events_camera
events_clock

Placing the initilized queues
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Subprocess timeout time

E‘ timeout_time_[ms]

gui_gvents
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= events_error_message
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‘Camera’, 'Sound', and 'Logger’
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queue_clock
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Figure B.2
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B.3 close.vi

Waits for 100ms before closing the queues.
This will give the other modules encugh to
quit properly rather than just erroring out

[Release all subprocess message queues|

configuration_data qUEUE_camera

queue_clock E
mmnq&lnﬁﬂ-r queue_sound i
=5

queue_logger [
gui_events

Destroy all user
events in event queues

error in (no error)

error out

Figure B.3: Close of the application.
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ion.vi

t

_recogimi

color

B.4

both_images in

Define rectangle to be used

for extracting the left image

Get index for where the left

image ends in the frame

Extract the vertical center

line of the left image

TJAC Extract 2 IMAQ ColorimageToArray

g m Index Array
a:

Calculate mean RGE values based
on pixels in the defined line width
area and scaling parameters,

mean_rgb.vi color_to_ulwi

cone_rgbw_sight_hearing_scaling.vi

Get the vertical center
index for the frame

Define line width area of interest
as 6.25% of left image width

error in (no efror)

T

c
m

M

error out

o

color

m
m
3

=
B

m

Figure B.4: Color recognition code.
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V1

sound

B.5

‘Generate sound

[[Default
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|}

| #sonification

[ #process states |

nmﬁmv_ _Smazsn_ummﬂ_:umv
T_ no_color_sound==false, Default <I
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generate_tick_
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Figure B.5: Loop that is responsible for generating sound signals.
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Figure B.6: Loop that is responsible for playing sound signals.
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B.6 generate_color_signals
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Figure B.7: Code that generates color signals.
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Figure B.8: Code that generates the tick signal.
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B.8 distance_ssd
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Figure B.9: Code that performs the distance calculation.
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Figure B.10: Code that extracts horizontal lines form camera frame and converts the pixels to array.
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B.10 ssd_method.vi
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Figure B.11: Code that performs the sum.sq.diff method and calculates the disparity corresponding
to each set of lines.
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B.11 disparity_filtration.vi
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Figure B.12: Code that filters the array of disparities with a band pass filter to remove disparities
outside of range.
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Figure B.13: Code that further filters the array of disparities and passes trough the most frequently

occurring disparities.
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B.12 disparity_interpolat

[ True <W_

Interpolation: x1<x2 =>
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reliable_disparity?
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Figure B.14: Code that finds the distance with the use of a look-up table and interpolation.
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C 3D-design prototypes

Figure C.1: What we learned: Lenses must be centered

Figure C.2: What we learned: 1. Less sharp edges. 2. Nose pad must be interchangeable. 3.
Temples to short. 4. Temples must be modular

Figure C.3: What we learned: Temples should be mounted on a collapsible mechanism.
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Figure C.4: What we learned: 1.

Upper and lower edges should not be smoothed. 2. Temples
mounting mechanism should have two positions, free and fized. Once the temples are deployed, they

should be in the fized position. They should stay there unless the user deliberately forces the temples
back in to the folded “free” position.

Figure C.5: What we learned: 1.

ZED Mini mounting points should be stronger.
collapsing mechanism should be stronger. 3. Setscrews need an ingress for easier entry.

2. Temples

e

Figure C.6: What we learned: 1. ZED Mini mounting points should be even stronger. 2. Cut out
section for lenses should be smaller.
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Figure C.7: What we learned: Right inner side of the housing needs additional strengthening col-
lapsible mechanism.

Figure C.8: Final design
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Figure C.9: Temples V1

Figure C.10: Temples V2

Figure C.11: Temples V3

Figure C.12: Temples V/
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Figure C.13: Temples V5

Figure C.14: Temples V6

Figure C.15: Temples V7

Figure C.16: Temples V8
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C.1 Computer Free fall simulations

These simulations were done with the Housing injection molded with ABS. The arrow in
Figure [C.17] and [C.18| represents a 5N force that would occur during an impact after a free
fall. For the sake of over-engineering we decided to do these simulations as if our prototype
weighed 500grams, the actual weight is about a third of that.

327 2 Max.
“ Load Casel~ q: 300

Stress r
Von Mises - — 25

MPa v

& 4 };150

— 79
0 Min.

Figure C.17: Computer simulation without the ZED mini aluminium frame mounted

The simulation in Figure was done without the ZED Mini aluminium frame inside. We
can observe a huge flex in the frame, but the damage is not plastic deformation. The frame
will still return to the original shape after the damage.
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Figure C.18: This simulation was done with the ZED Mini aluminium frame inside.

The simulation in Figure[C.18 was done with the ZED Mini aluminium frame inside. Because
the housing is less free to rotate and flex during the impact, the force will be distributed
through a smaller area than previously. The damage done by the impact is not permanent,
as the frame should return to its original form.
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D Additional attachments

In this section you can find all the additional attachments for this thesis, focusing mainly on
the management side of the project.

D.1 Timetable

The timetable for the project can be seen in Figure [D.I], and contains all the logged hours
for each week spent on the project.

Date period Week Jon Petter |Jargen |Magnu5 |Mohammed Total (hours)
09.01-13.01 2 11.00 11,50 14,00 10,50 47.00
14.01 - 20.01 3 8,00 14,75 12,50 11,50 46.75
21.01-27.1 4 525 7,00 6,25 6,25 2475
28.01-03.02 5 11.50 26,75 18.50 15,00 71,75
04.02 -10.02 b 7,75 6.50 29,74 20,25 64.25
11.02 - 17.02 7 19,00 17.75 14,60 15,50 B66.75
18.02 - 24.02 g 4,50 7.00 3.00 4.50 19,00
256.02-03.03 9 6,00 5.50 7.00 2.00 20,50
04.03-10.03 10 21,75 23,75 26,50 27,50 99,50
11.03 - 17.03 i 17.50 26,50 33.50 25,75 103.25
18.03 - 24.03 12 36.25 33.75 43.00 30,00 143.00
25.03-31.03 13 31.50 32.25 39.25 32,00 135.00
01.04 - 07.04 14 33.25 37.50 21,25 3775 129,75
08.04 -14.04 15 22.00 26,50 23,00 24 25 95,75
15.04 - 21.04 16 3,25 14,75 6,00 0,00 2400
22.04-28.04 17 36,25 36.00 3724 36,00 145,50
29.04 - 05.05 18 36,75 3725 43,00 46,25 163,25
06.05 -12.05 19 27.00 42745 40,00 48,245 158,00
13.05 - 18.05 20 42,00 37,25 36,00 53,25 168,50
20.056 - 26.05 g 51.00 76,50 71,60 26,25 22525
27.05-28.05 22 21,00 2425 26,00 15,50 86.75

[ToTAL 2038.25

Figure D.1: The timetable for the project, with the time shown in hours and minutes, where 0,25
18 1bmin, 0,50 is 30min, and 0,75 is 4bmin.
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D.2 S-curve

The S-curve for the project can be seen in Figure [D.2] and is based on the data from the
timetable.
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Figure D.2: The S-curve for the project.
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D.3 Gantt diagram

The final revision of the Gantt diagram can be seen in Figure [D.3]|

project
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Figure D.3
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Visually Impaired

Colorophone is a sensory substitution device that enables visually impaired individuals to acquire visual
information such as color and distance through sound. The previous versions of Colorophone used an
ultrasonic sensor to detect distance [1]. In the past the Colorophone team demonstrated the potential of

using eye-tracking systems. Our belief is that stereo

the practical functionality of the Coloropt Our journey started with a question; could a stereo camera

expand the distance sensing abilities of the Colorophone, and replace the ultrasonic sensor as a superior

alternative?

We started the project by searching for the best consumer stereo camera on the market, we had a total of

eight options. We ordered the two cameras with the most promising technical specifications. The Intel
D415 and Stereolabs ZED Mini utilize different types of sensors to achieve stereo vision. Our results
proved that the ZED Mini was better for our use case, because it had better color and distance accuracy.

Our main job was to create a prototype that could detect distance and color using a stereo camera, then
retransmit the information to the user by audio.

Humans can understand how far away an object is by comparing what our left and right eyes see. Stereo
s for esti ing di: Two camera sensors are placed on the same

cameras utilize the same
baseline, both perceiving the same scene from two different perspectives. Images from the sensors wi
depict the same object in two different positions, see Figure 1. The difference in position for the object is

called binocular disparity, and is directly relatable to the distance to the object.

Figure 1, baseline is the distance between the camera lenses. Figure 2, our 3D printed protoype.

on in conjunction with eye tracking could improve

Colorophone, A Stereo Vision based Wearable Sonification System for the

Digital images are a composition of pixels. Each pixel contains the value for the colour red, green and
blue (RGB). By comparing the specific RGB numeric sequences from the left and right image from the
stereo camera, we can find the binocular disparity. The software code starts by selecting a small area
of the left image, which is then matched with a defined area in the right image. The matching is

achieved by utilizing the mathematical method Sum of Squared Differences.

The color recognition algorithm calculates the mean RGB value for the pixels in the centre of the left
image. The sonification system starts by creating three different sinusoidal signals with unique
frequencies, for the colours red, green, and blue. The amplitude for the individual signals are depend-
ent on the quantity of the corresponding color detected by the software. The color audio signals are
added together with a ramp wave , where the frequency of the ramp wave is the inverse of the
calculated distance. This ramp wave will give off a "tick’ sound, and the closer an object, the more fre-
quent the ticks.

The final prototype is a hybrid mixture tr yegl: and augmented reality
headsets. They fit on the user like eyeglasses, but we had to use a strap mechanism to achieve better

weight balance. The temples are designed to be user adjustable to fit better. The nose pad is
interchangeable so the user can choose the design that fits them the best. Bone conducting
ity to hear their surroundings.

headphones are used so that the user still has the a
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Figure E.1

Figure 1 taken from: https://www.intelrealsense.com/wp-content/uploads/2018/12/stereo-ssd-1.png
[1] D. Osinski, “A sensory substitution device inspired by the human visual system,” 2018.
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